E-semigroup

Last updated

In the area of mathematics known as semigroup theory, an E-semigroup is a semigroup in which the idempotents form a subsemigroup. [1]

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.

Certain classes of E-semigroups have been studied long before the more general class, in particular, a regular semigroup that is also an E-semigroup is known as an orthodox semigroup.

In mathematics, a regular semigroup is a semigroup S in which every element is regular, i.e., for each element a, there exists an element x such that axa = a. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations.

In mathematics, an orthodox semigroup is a regular semigroup whose set of idempotents forms a subsemigroup. In more recent terminology, an orthodox semigroup is a regular E-semigroup. The term orthodox semigroup was coined by T. E. Hall and presented in a paper published in 1969. Certain special classes of orthodox semigroups have been studied earlier. For example, semigroups which are also unions of groups, in which the sets of idempotents form subsemigroups were studied by P. H. H. Fantham in 1960.

Weipoltshammer proved that the notion of weak inverse (the existence of which is one way to define E-inversive semigroups) can also be used to define/characterize E-semigroups as follows: a semigroup S is an E-semigroup if and only if, for all a and bS, W(ab) = W(b)W(a), where W(x) ≝ {xS | xax = x} is the set of weak inverses of x. [1]

In mathematics, the term weak inverse is used with several meanings.

Related Research Articles

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same".

In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element.

In abstract algebra, the idea of an inverse element generalises concepts of a negation in relation to addition, and a reciprocal in relation to multiplication. The intuition is of an element that can 'undo' the effect of combination with another given element. While the precise definition of an inverse element varies depending on the algebraic structure involved, these definitions coincide in a group.

In mathematics, and more specifically in abstract algebra, an algebraic structure on a set A is a collection of finitary operations on A; the set A with this structure is also called an algebra.

In the mathematical subject of universal algebra, a variety of algebras is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.

In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras.

In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.

In mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if X and Y are sets and LX × Y is a relation from X to Y, then LT is the relation defined so that y LTx if and only if x L y. In set-builder notation, LT = {(y, x) ∈ Y × X | ∈ L}.

In algebra, a presentation of a monoid is a description of a monoid in terms of a set Σ of generators and a set of relations on the free monoid Σ generated by Σ. The monoid is then presented as the quotient of the free monoid by these relations. This is an analogue of a group presentation in group theory.

In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, in semigroup theory, a Rees factor semigroup, named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup.

In mathematics, Nambooripad order is a certain natural partial order on a regular semigroup discovered by K S S Nambooripad in late seventies. Since the same partial order was also independently discovered by Robert E Hartwig, some authors refer to it as Hartwig–Nambooripad order. "Natural" here means that the order is defined in terms of the operation on the semigroup.

In mathematics, Brandt semigroups are completely 0-simple inverse semigroups. In other words, they are semigroups without proper ideals and which are also inverse semigroups. They are built in the same way as completely 0-simple semigroups:

In abstract algebra, an E-dense semigroup is a semigroup in which every element a has at least one weak inversex, meaning that xax = x. The notion of weak inverse is weaker than the notion of inverse used in a regular semigroup.

References

  1. 1 2 Weipoltshammer, B. (2002). "Certain congruences on E-inversive E-semigroups". Semigroup Forum . 65 (2): 233. doi:10.1007/s002330010131.