An extrinsic information transfer chart, commonly called an EXIT chart, is a technique to aid the construction of good iteratively-decoded error-correcting codes (in particular low-density parity-check (LDPC) codes and Turbo codes).
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC is constructed using a sparse bipartite graph. LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length.
In information theory, turbo codes are a class of high-performance forward error correction (FEC) codes developed around 1990–91, which were the first practical codes to closely approach the channel capacity, a theoretical maximum for the code rate at which reliable communication is still possible given a specific noise level. Turbo codes are used in 3G/4G mobile communications and in satellite communications as well as other applications where designers seek to achieve reliable information transfer over bandwidth- or latency-constrained communication links in the presence of data-corrupting noise. Turbo codes are nowadays competing with LDPC codes, which provide similar performance.
EXIT charts were developed by Stephan ten Brink, building on the concept of extrinsic information developed in the Turbo coding community. [1] An EXIT chart includes the response of elements of decoder (for example a convolutional decoder of a Turbo code, the LDPC parity-check nodes or the LDPC variable nodes). The response can either be seen as extrinsic information or a representation of the messages in belief propagation.
Belief propagation, also known as sum-product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node, conditional on any observed nodes. Belief propagation is commonly used in artificial intelligence and information theory and has demonstrated empirical success in numerous applications including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability.
If there are two components which exchange messages, the behaviour of the decoder can be plotted on a two-dimensional chart. One component is plotted with its input on the horizontal axis and its output on the vertical axis. The other component is plotted with its input on the vertical axis and its output on the horizontal axis. The decoding path followed is found by stepping between the two curves. For a successful decoding, there must be a clear swath between the curves so that iterative decoding can proceed from 0 bits of extrinsic information to 1 bit of extrinsic information.
A key assumption is that the messages to and from an element of the decoder can be described by a single number, the extrinsic information. This is true when decoding codes from a binary erasure channel but otherwise the messages are often samples from a Gaussian distribution with the correct extrinsic information. The other key assumption is that the messages are independent (equivalent to an infinite block-size code without local structure between the components)
disambiguation: Landauer's principle
To make an optimal code, the two transfer curves need to lie close to each other. This observation is supported by the theoretical result that for capacity to be reached for a code over a binary-erasure channel there must be no area between the curves and also by the insight that a large number of iterations are required for information to be spread throughout all bits of a code.
In information theory and coding theory with applications in computer science and telecommunication, error detection and correction or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression. The process of finding and/or using such a code proceeds by means of Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
In telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.
A communication channel or simply channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.
Base64 is a group of similar binary-to-text encoding schemes that represent binary data in an ASCII string format by translating it into a radix-64 representation. The term Base64 originates from a specific MIME content transfer encoding. Each Base64 digit represents exactly 6 bits of data. Three 8-bit bytes can therefore be represented by four 6-bit Base64 digits.
Claude Berrou is a French professor in electrical engineering at École Nationale Supérieure des Télécommunications de Bretagne, now IMT Atlantique. He is the sole inventor of a groundbreaking quasi-optimal error-correcting coding scheme called Turbo codes as evidenced by the sole inventorship credit given on the fundamental patent for turbo codes. The original patent filing for turbo codes issued in the US as US Patent 5,446,747.
In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel.
In coding theory, the repetition code is one of the most basic error-correcting codes. In order to transmit a message over a noisy channel that may corrupt the transmission in a few places, the idea of the repetition code is to just repeat the message several times. The hope is that the channel corrupts only a minority of these repetitions. This way the receiver will notice that a transmission error occurred since the received data stream is not the repetition of a single message, and moreover, the receiver can recover the original message by looking at the received message in the data stream that occurs most often.
Hybrid automatic repeat request is a combination of high-rate forward error-correcting coding and ARQ error-control. In standard ARQ, redundant bits are added to data to be transmitted using an error-detecting (ED) code such as a cyclic redundancy check (CRC). Receivers detecting a corrupted message will request a new message from the sender. In Hybrid ARQ, the original data is encoded with a forward error correction (FEC) code, and the parity bits are either immediately sent along with the message or only transmitted upon request when a receiver detects an erroneous message. The ED code may be omitted when a code is used that can perform both forward error correction (FEC) in addition to error detection, such as a Reed–Solomon code. The FEC code is chosen to correct an expected subset of all errors that may occur, while the ARQ method is used as a fall-back to correct errors that are uncorrectable using only the redundancy sent in the initial transmission. As a result, hybrid ARQ performs better than ordinary ARQ in poor signal conditions, but in its simplest form this comes at the expense of significantly lower throughput in good signal conditions. There is typically a signal quality cross-over point below which simple hybrid ARQ is better, and above which basic ARQ is better.
In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with a redundant in the form of an ECC. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. ECC gives the receiver the ability to correct errors without needing a reverse channel to request retransmission of data, but at the cost of a fixed, higher forward channel bandwidth. ECC is therefore applied in situations where retransmissions are costly or impossible, such as one-way communication links and when transmitting to multiple receivers in multicast. For example, in the case of a satellite orbiting around Uranus, a retransmission because of decoding errors can create a delay of 5 hours. ECC information is usually added to mass storage devices to enable recovery of corrupted data, is widely used in modems, and is used on systems where the primary memory is ECC memory.
In computer science, repeat-accumulate codes are a low complexity class of error-correcting codes. They were devised so that their ensemble weight distributions are easy to derive. RA codes were introduced by Divsalar et al.
The error floor is a phenomenon encountered in modern iterated sparse graph-based error correcting codes like LDPC codes and turbo codes. When the bit error ratio (BER) is plotted for conventional codes like Reed–Solomon codes under algebraic decoding or for convolutional codes under Viterbi decoding, the BER steadily decreases in the form of a curve as the SNR condition becomes better. For LDPC codes and turbo codes there is a point after which the curve does not fall as quickly as before, in other words, there is a region in which performance flattens. This region is called the error floor region. The region just before the sudden drop in performance is called the waterfall region.
The BCJR algorithm is an algorithm for maximum a posteriori decoding of error correcting codes defined on trellises. The algorithm is named after its inventors: Bahl, Cocke, Jelinek and Raviv. This algorithm is critical to modern iteratively-decoded error-correcting codes including turbo codes and low-density parity-check codes.
In coding theory, concatenated codes form a class of error-correcting codes that are derived by combining an inner code and an outer code. They were conceived in 1966 by Dave Forney as a solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications in the 1970s.
In digital communications, a turbo equalizer is a type of receiver used to receive a message corrupted by a communication channel with intersymbol interference (ISI). It approaches the performance of a maximum a posteriori (MAP) receiver via iterative message passing between a soft-in soft-out (SISO) equalizer and a SISO decoder. It is related to turbo codes in that a turbo equalizer may be considered a type of iterative decoder if the channel is viewed as a non-redundant convolutional code. The turbo equalizer is different from classic a turbo-like code, however, in that the 'channel code' adds no redundancy and therefore can only be used to remove non-gaussian noise.
In information theory, a polar code is a linear block error correcting code. The code construction is based on a multiple recursive concatenation of a short kernel code which transforms the physical channel into virtual outer channels. When the number of recursions becomes large, the virtual channels tend to either have high reliability or low reliability, and the data bits are allocated to the most reliable channels. Polar codes were described by Erdal Arıkan in 2009. There is work suggesting this is equivalent to an earlier optimised code for bitwise multistage decoding, a code originally described by Norbert Stolte. It is the first code with an explicit construction to provably achieve the channel capacity for symmetric binary-input, discrete, memoryless channels (B-DMC) with polynomial dependence on the gap to capacity. Notably, polar codes have modest encoding and decoding complexity , which renders them attractive for many applications. Moreover, the encoding and decoding energy complexity of generalized polar codes can reach the fundamental lower bounds for energy consumption of two dimensional circuitry to within an factor for any ..
Sudoku codes are non-linear forward error correcting codes following rules of sudoku puzzles designed for an erasure channel. Based on this model, the transmitter sends a sequence of all symbols of a solved sudoku. The receiver either receives a symbol correctly or an erasure symbol to indicate that the symbol was not received. The decoder gets a matrix with missing entries and uses the constraints of sudoku puzzles to reconstruct a limited amount of erased symbols.
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.