Early long-term potentiation

Last updated

Early long-term potentiation (E-LTP) is the first phase of long-term potentiation (LTP), a well-studied form of synaptic plasticity, and consists of an increase in synaptic strength. [1] LTP could be produced by repetitive stimulation of the presynaptic terminals, and it is believed to play a role in memory function in the hippocampus, amygdala and other cortical brain structures in mammals. [2] [3]

Contents

Long-term potentiation occurs when synaptic transmission becomes more effective as a result of recent activity. The neuronal changes can be temporary and wear off after some hours (early LTP) or much more stable and long-lasting (late LTP).

Early and late phase

It has been proposed that long-term potentiation is composed of at least two different phases: [4] protein synthesis-independent E-LTP (early LTP) and protein synthesis-dependent L-LTP (late LTP). A single train of high-frequency stimuli is needed to trigger E-LTP that begins right after the stimulation, lasting a few hours or less, and depending primarily on short-term kinase activity. Contrarily stronger stimulation protocols are needed to recruit L-LTP that begins after a few hours, lasts for at least eight hours, and depends on the activation of de novo gene transcription. These different characteristics suggest a relationship between E-LTP and short-term memory phase, as well as L-LTP and long-term memory phase. [1]

LTP and memory phases

A comparison [5] between LTP induced by two spaced trains of stimuli and LTP induced by four trains in wild-type mice showed that LTP induced by two trains decays faster than the one induced by one train and slower than the one induced by four trains. Moreover, the LTP induced by two trains is only partially impaired by protein kinase A (PKA) inhibition and not by protein synthesis inhibition. These findings [5] suggested that there is a PKA-dependent phase of LTP intermediate to E-LTP and L-LTP, which was called intermediate LTP (I-LTP).

In the transgenic mice, on the other hand, LTP induced by two trains decayed faster than in wild-type mice, implying that excessive calcineurin activity suppresses both I-LTP and L-LTP. This calcineurin-overexpression could be associated to memory-related behavioral deficits. [6] The transgenic mice performed poorly in spatial memory tasks compared to wild-type mice, indicating a deficit. However when trained more intensively their performance deficit with respect to wild-type mice disappears. Moreover the transgenic mice performed normally on memory tasks 30 minutes after training, but were considerably impaired 24 hours after training. This led to the conclusion that calcineurin-overexpressing mice have a deficit in long-term memory consolidation, which reflects their deficit in late phase LTP.

Biological processes

Training of simple reflexes in Aplysia has shown a strengthening between sensory and motor neurons responsible for those reflexes; on a cellular level, for short-term memory (and thus, early LTP) potentiation leads to an increase in presynaptic neurotransmitter by means of modifications of proteins through cAMP-dependent PKA and PKC. The long-term process requires new protein synthesis and CAMP-mediated gene expression, and results in the growth of new synaptic connections. [7]

These findings have led to the question whether there is a similar process in mammals. Input to the hippocampus comes from the neurons of the entorhinal cortex by means of the perforant pathway, which synapses on the granule cells of the dentate gyrus. The granule cells in turn send their axons, the mossy fibre pathway (CA3), to synapse on the pyramidal cells of the CA3 region. Finally, the axons of the pyramidal cells in the CA3 regions, the Schaffer collateral pathway (CA1), terminate on the pyramidal cells of the CA1 region. Damage to any of these hippocampal pathways is sufficient to cause some memory disturbance in humans. [8]

In the perforant and Schaffer pathways, LTP is induced by activating a postsynaptic NMDA receptor, causing an influx of calcium. In the mossy fibres pathway on the other hand, LTP is induced presynaptically through an influx of glutamate. [7]

E-LTP and classical conditioning

Early LTP is best studied in the context of classical conditioning. As the signal of an unconditioned stimulus enters the pontine nuclei in the brainstem, the signal travels through the mossy fibres to the interpositus nucleus and the parallel fibres in the cerebellum. The parallel fibres synapse on so called Purkinje cells, which simultaneously receive input of the unconditioned stimulus via the inferior olives and climbing fibres.

The parallel fibres release glutamate, which activates inhibitory metabotropic and excitatory ionotropic AMPA receptors. The metabotropic receptors activate an enzyme cascade via G protein, which leads to the activation of protein kinase C (PKC). This PKC phosphorylates the active ionotropic receptors.

At another place of the cell, the climbing fibres carry the neurotransmitter aspartate to the Purkinje cell, and that leads to the opening of calcium channels, which in turn causes an increased influx of calcium to the cell. The calcium activates PKC once again, and the phosphorylised ionotropic receptors are internalised. Thus, the surplus of metabotropic receptors hyperpolarises the cell, and the interpositus nucleus depolarises the inferior olives, which causes a decrease in expectation of the unconditioned stimulus and therefore causing an inhibition in early LTP or a period of long-term depression. [7] [9]

Clinical perspectives

LTP in Alzheimer's disease

It is known that Alzheimer's disease is characterized by extracellular deposits of neurotoxic amyloid peptides (Aβ), intracellular aggregation of hyper-phosphorylated tau protein, and neuronal death. [10] Whereas chronic stress is characterized by its negative impacts on the effect of learning and memory and furthermore can exacerbate a number of disorders, including Alzheimer's disease (AD). [11] [12]

Previous studies have shown that the combination of chronic psychosocial stress and chronic infusion of a pathogenic dose of Aβ peptides impairs learning and memory and severely diminishes early phase long-term potentiation (E-LTP) in the hippocampal area CA1 of anesthetized rat. [13] [14] [15] [12]

Chronic psychosocial stress was produced using a rat intruder model and the at-risk rat model of Alzheimer's disease was created by osmotic pump infusion of sub-pathological dose of Aβ (subAβ). Electrophysiological methods were used to evoke and record early and late phase LTP in the dentate gyrus of anesthetized rats, and immunoblotting was used to measure levels of memory-related signaling molecules in the same region. These Electrophysiological and molecular tests in the dentate gyrus showed that subAβ rats or stressed rats were not different from control rats. However, the present findings conclude that when stress and subAβ are combined, significant suppression of E-LTP magnitude results.

In summary, although the CA1 and DG regions are closely related physically and functionally, they react differently to insults. While the area CA1 is vulnerable to stress and the combination stress/subAβ, the DG is remarkably resistant to the offending combination of subAβ and chronic stress. [13] [15] [14]

LTP in drug use

Another use of LTP is in drug abuse. As can be seen in many drug victims, conditioning plays a vital role in building up a tolerance. In reconditioning recovering addicts to the place in which they used to take drugs with a different stimulus, the craving they feel could be counteracted. A rather successful experimental study [16] has shown that this paradigm lowers the danger of relapsing and works as extinction. [17]

Alternative models

Source: [18]

The hypothesis that the stabilisation of synaptic plasticity depends on de novo protein synthesis is popular in literature. The temporal differentiation between early and late LTP is also based on this. Early LTP is associated with short-term memory and late LTP with long-term memory. Behavioural studies raised evidence against this differentiation.

Studies with protein synthesis inhibitors showed that blocking protein synthesis did not block memory retention. [19] Stable LTP were found in slice preparation of the hippocampus under a state of global protein synthesis inhibition. [20] Those studies show that LTP stabilization can happen independently from protein synthesis. This shows that the association between protein synthesis and stabilization is insufficient to determine the difference between early and late LTP.

Instead of the differentiation into early and late LTP and protein synthesis as the driving force for LTP and memory stabilization, an alternative model was proposed: in addition to the protein synthesis, the protein degradation also determines the stabilization, so the turn-over rate of proteins is said to underlie LTP stabilization. According to the model, the differentiation into temporal phases of LTP is inappropriate and even hindering to future research about LTP. Mechanisms can be overlooked due to the closed temporalization of function and processes.

Related Research Articles

<span class="mw-page-title-main">Dendritic spine</span> Small protrusion on a dendrite that receives input from a single axon

A dendritic spine is a small membrane protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head, and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines. In addition to spines providing an anatomical substrate for memory storage and synaptic transmission, they may also serve to increase the number of possible contacts between neurons. It has also been suggested that changes in the activity of neurons have a positive effect on spine morphology.

<span class="mw-page-title-main">Long-term potentiation</span> Persistent strengthening of synapses based on recent patterns of activity

In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength.

<span class="mw-page-title-main">Synaptic plasticity</span> Ability of a synapse to strengthen or weaken over time according to its activity

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.

In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.

<span class="mw-page-title-main">Retrograde signaling</span> In biology, a signal traveling backwards to its source

Retrograde signaling in biology is the process where a signal travels backwards from a target source to its original source. For example, the nucleus of a cell is the original source for creating signaling proteins. During retrograde signaling, instead of signals leaving the nucleus, they are sent to the nucleus. In cell biology, this type of signaling typically occurs between the mitochondria or chloroplast and the nucleus. Signaling molecules from the mitochondria or chloroplast act on the nucleus to affect nuclear gene expression. In this regard, the chloroplast or mitochondria act as a sensor for internal external stimuli which activate a signaling pathway.

<span class="mw-page-title-main">Neural cell adhesion molecule</span> Mammalian protein found in Homo sapiens

Neural cell adhesion molecule (NCAM), also called CD56, is a homophilic binding glycoprotein expressed on the surface of neurons, glia and skeletal muscle. Although CD56 is often considered a marker of neural lineage commitment due to its discovery site, CD56 expression is also found in, among others, the hematopoietic system. Here, the expression of CD56 is mostly associated with, but not limited to, natural killer cells. CD56 has been detected on other lymphoid cells, including gamma delta (γδ) Τ cells and activated CD8+ T cells, as well as on dendritic cells. NCAM has been implicated as having a role in cell–cell adhesion, neurite outgrowth, synaptic plasticity, and learning and memory.

Schaffer collaterals are axon collaterals given off by CA3 pyramidal cells in the hippocampus. These collaterals project to area CA1 of the hippocampus and are an integral part of memory formation and the emotional network of the Papez circuit, and of the hippocampal trisynaptic loop. It is one of the most studied synapses in the world and named after the Hungarian anatomist-neurologist Károly Schaffer.

<span class="mw-page-title-main">Major prion protein</span> Protein involved in multiple prion diseases

The major prion protein (PrP) is encoded in the human body by the PRNP gene also known as CD230. Expression of the protein is most predominant in the nervous system but occurs in many other tissues throughout the body.

Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of individual synapses. However this new form referred to the plasticity of the plasticity itself, thus the term meta-plasticity. The idea is that the synapse's previous history of activity determines its current plasticity. This may play a role in some of the underlying mechanisms thought to be important in memory and learning such as long-term potentiation (LTP), long-term depression (LTD) and so forth. These mechanisms depend on current synaptic "state", as set by ongoing extrinsic influences such as the level of synaptic inhibition, the activity of modulatory afferents such as catecholamines, and the pool of hormones affecting the synapses under study. Recently, it has become clear that the prior history of synaptic activity is an additional variable that influences the synaptic state, and thereby the degree, of LTP or LTD produced by a given experimental protocol. In a sense, then, synaptic plasticity is governed by an activity-dependent plasticity of the synaptic state; such plasticity of synaptic plasticity has been termed metaplasticity. There is little known about metaplasticity, and there is much research currently underway on the subject, despite its difficulty of study, because of its theoretical importance in brain and cognitive science. Most research of this type is done via cultured hippocampus cells or hippocampal slices.

Ca<sup>2+</sup>/calmodulin-dependent protein kinase II Class of enzymes

Ca2+
/calmodulin-dependent protein kinase II
is a serine/threonine-specific protein kinase that is regulated by the Ca2+
/calmodulin complex. CaMKII is involved in many signaling cascades and is thought to be an important mediator of learning and memory. CaMKII is also necessary for Ca2+
homeostasis and reuptake in cardiomyocytes, chloride transport in epithelia, positive T-cell selection, and CD8 T-cell activation.

<span class="mw-page-title-main">Synaptic potential</span> Potential difference across the postsynaptic membrane

Synaptic potential refers to the potential difference across the postsynaptic membrane that results from the action of neurotransmitters at a neuronal synapse. In other words, it is the “incoming” signal that a neuron receives. There are two forms of synaptic potential: excitatory and inhibitory. The type of potential produced depends on both the postsynaptic receptor, more specifically the changes in conductance of ion channels in the post synaptic membrane, and the nature of the released neurotransmitter. Excitatory post-synaptic potentials (EPSPs) depolarize the membrane and move the potential closer to the threshold for an action potential to be generated. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the membrane and move the potential farther away from the threshold, decreasing the likelihood of an action potential occurring. The Excitatory Post Synaptic potential is most likely going to be carried out by the neurotransmitters glutamate and acetylcholine, while the Inhibitory post synaptic potential will most likely be carried out by the neurotransmitters gamma-aminobutyric acid (GABA) and glycine. In order to depolarize a neuron enough to cause an action potential, there must be enough EPSPs to both depolarize the postsynaptic membrane from its resting membrane potential to its threshold and counterbalance the concurrent IPSPs that hyperpolarize the membrane. As an example, consider a neuron with a resting membrane potential of -70 mV (millivolts) and a threshold of -50 mV. It will need to be raised 20 mV in order to pass the threshold and fire an action potential. The neuron will account for all the many incoming excitatory and inhibitory signals via summative neural integration, and if the result is an increase of 20 mV or more, an action potential will occur.

Ras-GRF1 is a guanine nucleotide exchange factor. Its function is to release guanosine diphosphate, GDP, from the signaling protein RAS, thus increasing the activity of RAS by allowing it to bind to guanosine triphosphate, GTP, returning it to its active state. In this way, Ras-GRF1 has a key role in regulating the RAS signaling pathway. Ras-GRF1 mediates the activation of RAS via Ca2+ bound calmodulin protein.

<span class="mw-page-title-main">Protein kinase C zeta type</span> Mammalian protein found in Homo sapiens

Protein kinase C, zeta (PKCζ), also known as PRKCZ, is a protein in humans that is encoded by the PRKCZ gene. The PRKCZ gene encodes at least two alternative transcripts, the full-length PKCζ and an N-terminal truncated form PKMζ. PKMζ is thought to be responsible for maintaining long-term memories in the brain. The importance of PKCζ in the creation and maintenance of long-term potentiation was first described by Todd Sacktor and his colleagues at the SUNY Downstate Medical Center in 1993.

The cellular transcription factor CREB helps learning and the stabilization and retrieval of fear-based, long-term memories. This is done mainly through its expression in the hippocampus and the amygdala. Studies supporting the role of CREB in cognition include those that knock out the gene, reduce its expression, or overexpress it.

Synaptic tagging, or the synaptic tagging hypothesis, has been proposed to explain how neural signaling at a particular synapse creates a target for subsequent plasticity-related product (PRP) trafficking essential for sustained LTP and LTD. Although the molecular identity of the tags remains unknown, it has been established that they form as a result of high or low frequency stimulation, interact with incoming PRPs, and have a limited lifespan.

Long-term potentiation (LTP), thought to be the cellular basis for learning and memory, involves a specific signal transmission process that underlies synaptic plasticity. Among the many mechanisms responsible for the maintenance of synaptic plasticity is the cadherin–catenin complex. By forming complexes with intracellular catenin proteins, neural cadherins (N-cadherins) serve as a link between synaptic activity and synaptic plasticity, and play important roles in the processes of learning and memory.

Memory allocation is a process that determines which specific synapses and neurons in a neural network will store a given memory. Although multiple neurons can receive a stimulus, only a subset of the neurons will induce the necessary plasticity for memory encoding. The selection of this subset of neurons is termed neuronal allocation. Similarly, multiple synapses can be activated by a given set of inputs, but specific mechanisms determine which synapses actually go on to encode the memory, and this process is referred to as synaptic allocation. Memory allocation was first discovered in the lateral amygdala by Sheena Josselyn and colleagues in Alcino J. Silva's laboratory.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

<span class="mw-page-title-main">Homosynaptic plasticity</span> Type of synaptic plasticity.

Homosynaptic plasticity is one type of synaptic plasticity. Homosynaptic plasticity is input-specific, meaning changes in synapse strength occur only at post-synaptic targets specifically stimulated by a pre-synaptic target. Therefore, the spread of the signal from the pre-synaptic cell is localized.

Eric Klann is an American neuroscientist who studies how molecular signaling, synaptic plasticity, and behavior are altered in developmental disability, autism, aging, psychiatric disorders, and Alzheimer's disease.

References

  1. 1 2 Huang, Emily P. (1998-05-07). "Synaptic plasticity: Going through phases with LTP". Current Biology. 8 (10): R350 –R352. Bibcode:1998CBio....8.R350H. doi: 10.1016/S0960-9822(98)70219-2 . ISSN   0960-9822. PMID   9601635. S2CID   10548899.
  2. Huerta P.T., Tonegawa S., Tsien J.Z. (1996). "The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory". Cell. 87 (7): 1327–1338. doi: 10.1016/S0092-8674(00)81827-9 . PMID   8980238. S2CID   2730362.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. LeDoux J.E., Rogan M.T., Staubli U.V. (1997). "Fear conditioning induces associative long-term potentiation in the amygdala". Nature. 390 (6660): 604–607. Bibcode:1997Natur.390..604R. doi:10.1038/37601. PMID   9403688. S2CID   4310181.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Frey (1993). "Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons". Science. 260 (5114): 1661–1664. Bibcode:1993Sci...260.1661F. doi:10.1126/science.8389057. PMID   8389057.
  5. 1 2 Kandel E.R., Mansuy I.M., Osman M., Moallem T.M., Winder D.G (1998). "Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin". Cell. 92 (1): 25–37. doi: 10.1016/s0092-8674(00)80896-x . PMID   9489697. S2CID   18429683.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Bach M.E., Jacob B., Kandel E.R., Mayford M., Mansuy I.M. (1998). "Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory". Cell. 92 (1): 39–49. doi: 10.1016/s0092-8674(00)80897-1 . PMID   9489698. S2CID   11586300.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. 1 2 3 A., Gluck, Mark (2008). Learning and memory : from brain to behavior. Mercado, Eduardo., Myers, Catherine E. New York: Worth Publishers. ISBN   978-0716786542. OCLC   190772862.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. Huang, Yan-You; Li, Xiao-Ching; Kandel, Eric R. (1994-10-07). "cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase". Cell. 79 (1): 69–79. doi:10.1016/0092-8674(94)90401-4. ISSN   0092-8674. PMID   7923379. S2CID   13645120.
  9. Berger, T. W.; Balzer, J. R.; Harty, T. P.; Robinson, G. B.; Sclabassi, R. J. (1988). Synaptic Plasticity in the Hippocampus. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 190–193. doi:10.1007/978-3-642-73202-7_54. ISBN   9783642732041.
  10. Tanzi, R.E., Bertram, L. (2005). "Twenty years of the Alzheimer's disease amyloid hypothesis, a genetic perspective". Cell. 120 (4): 545–555. doi: 10.1016/j.cell.2005.02.008 . PMID   15734686. S2CID   206559875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Srivareerat, M., Tran, T.T., Alzoubi, K.H., Alkadhi, K.A. (2009). "Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer's disease". Biol. Psychiatry. 65 (11): 918–926. doi: 10.1016/j.biopsych.2008.08.021 . PMID   18849021. S2CID   38948383.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. 1 2 Tsatali, M., Papaliagkas, V., Damigos, D., Mavreas, V., Gouva, M., Tsolaki, M. (2014). "Depression and anxiety levels increase chronic musculoskeletal pain in patients with Alzheimer's disease". Curr. Alzheimer Res. 11 (6): 574–579. doi:10.2174/1567205011666140618103406. PMID   24938501.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. 1 2 Tran, T.T., Srivareerat, M., Alkadhi, K.A. (2010). "Chronic psychosocial stress triggers cognitive impairment in a novel at-risk model of Alzheimer's disease". Neurobiol. Dis. 37 (3): 756–763. doi:10.1016/j.nbd.2009.12.016. PMID   20044001. S2CID   11446924.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. 1 2 Tran, T.T., Srivareerat, M., Alkadhi, K.A. (2011). "Chronic psychosocial stress accelerates impairment of long-term memory and late-phase long-term potentiation in an at-risk model of Alzheimer's disease". Hippocampus. 21 (7): 724–732. doi:10.1002/hipo.20790. PMID   20865724. S2CID   205912075.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. 1 2 Tran, T.T., Srivareerat, M., Alhaider, I.A., Alkadhi, K.A. (2011). "Chronic psychosocial stress enhances long-term depression in a subthreshold amyloid-beta rat model of Alzheimer's disease". J. Neurochem. 119 (2): 408–416. doi: 10.1111/j.1471-4159.2011.07437.x . PMID   21854392. S2CID   757274.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Blakey, Richard; Baker, Roger (1980). "An exposure approach to alcohol abuse". Behaviour Research and Therapy. 18 (4): 319–325. doi:10.1016/0005-7967(80)90090-x. ISSN   0005-7967. PMID   7436979.
  17. Poulos, Constantine X.; Hinson, Riley E.; Siegel, Shepard (1981). "The role of Pavlovian processes in drug tolerance and dependence: Implications for treatment". Addictive Behaviors. 6 (3): 205–211. doi:10.1016/0306-4603(81)90018-6. ISSN   0306-4603. PMID   7293843.
  18. Abbas, A. (2015). "Re-evaluation of the hypothesis that LTP has two temporal phases and that the late phase is protein synthesis dependent".{{cite journal}}: Cite journal requires |journal= (help)
  19. Stanton, P.K. and Sarvey, J.M. (1984). "Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis". J. Neurosci. 4 (12): 3080–3088. doi: 10.1523/JNEUROSCI.04-12-03080.1984 . PMC   6564864 . PMID   6502226.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Villers, A., Godaux, E. and Ris, L. (2012). "Long-lasting LTP requires neither repeated trains for its induction nor protein synthesis for its development". PLOS ONE. 7 (7): e40823. Bibcode:2012PLoSO...740823V. doi: 10.1371/journal.pone.0040823 . PMC   3394721 . PMID   22792408.{{cite journal}}: CS1 maint: multiple names: authors list (link)