Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:
Most often, efficiency is studied in connection with fairness, and the goal is to find a division which satisfies both efficiency and fairness criteria.
There is a cake . It is usually assumed to be either a finite 1-dimensional segment, a 2-dimensional polygon or a finite subset of the multidimensional Euclidean plane .
There are partners. Each partner has a subjective value function which maps subsets of to numbers.
has to be divided into disjoint subsets, such that each person receives a disjoint subset. The piece allocated to person is called , so that .
In the following lines we consider a cake with four parts: chocolate, vanilla, lemon and sugar, and two agents: Alice and George, with the following valuations:
Chocolate | Vanilla | Lemon | Sugar | |
---|---|---|---|---|
Value of Alice | 7 | 1 | 2 | 0 |
Value of George | 6 | 4 | 0 | 0 |
An allocation is called wasteful if it allocates to some agent a piece that is worth 0 to that agent but worth more than 0 to another agent. In symbols:
and .
Otherwise it is called non-wasteful (NW). In the example cake, an allocation giving all the cake to Alice is NW, but an allocation giving all the cake to George is wasteful since the lemon part is "wasted". There are many other NW allocations, for example, giving the chocolate to George and the remaining cake to Alice is NW.
An allocation Pareto-dominates an allocation , if at least one person feels that is better than , and no person feels that is worse than . In symbols:
An allocation is called Pareto optimal (PO) if it is not Pareto-dominated by any other division, i.e., it cannot be improved without objection. In the example cake, giving the entire cake to Alice is PO, but giving the entire cake to Bob is Pareto-dominated by the allocation where the lemon part is given to Alice. In general (when there are no connectivity requirements on the pieces), every wasteful allocation is Pareto-dominated, therefore every PO allocation is NW. However, the opposite is not true. For example, the allocation giving the chocolate to George and the remaining cake to Alice is NW but it is not PO - it is Pareto-dominated by the allocation giving to George the vanilla and half the chocolate. This is because, in the original allocation the utilities of (Alice, George) are (3, 6), while in the alternative allocation the utilities are (5.5, 7).
Efficient allocations always exist. For example, every utilitarian-optimal cake-cutting is PO, hence also NW.
However, finding such allocations may be hard. It may be impossible to find a NW cake-allocation using a finite number of "mark" and "eval" queries, even if there are only two agents with piecewise-uniform valuations. [1] : 9, Clm.3 This is because, after any finite number of such queries, the algorithm has information regarding only a finite number of intervals, and thus it cannot prevent waste inside the intervals: for any allocation of an interval to an agent, it is possible that this agent values a part of this interval at 0 while the other agent values the same part at 1. Hence, PO too is not attainable by a finite protocol. [2] : 560, Thm.5
The problem becomes easy under the assumption of strict positivity (each agent values each point of the cake at strictly more than 0): every allocation is trivially NW, and every allocation that gives all the cake to a single agent is trivially PO (since every other allocation gives this agent strictly lower utility).
The problem is also easy for an algorithm that uses direct revelation instead of queries. In a direct revelation algorithm, each agent reveals his/her entire valuation function to the algorithm; this is possible, for example, with piecewise-constant valuations. With direct revelation, it is easy to find a utilitarian-optimal allocation (by giving each piece to an agent who values it the most), and such an allocation is also PO and NW.
Often, it is required to find an allocation that is not only efficient but also fair according to various fairness notions. Existence still holds:
Finding such allocations may be hard even with strictly-positive valuations, depending on the computational model:
Often, in addition to efficient and fairness, there are geometric constraints on the pieces. For example, if the cake is an interval, then each agent may require a piece that is a contiguous interval. With this additional requirement:
From a computational perspective:
It is currently not known whether, for 3 or more agents with strictly-positive valuations, a connected proportional PO allocation can be found using a finite number of queries (in the query model) or using a polynomial algorithm (in the direct revelation model).
If the cake is a 1-dimensional interval and each person must receive a connected interval, the following general result holds: if the value functions are strictly monotonic (i.e. each person strictly prefers a piece over all its proper subsets) then every EF division is also PO (note that this is not true if the agents may receive disconnected pieces). Hence, in this case, the Simmons–Su protocols create a PO+EF division.
If the cake is a 1-dimensional circle (i.e. an interval whose two endpoints are topologically identified) and each person must receive a connected arc, then the previous result does not hold: an EF division is not necessarily PE. Additionally, there are pairs of (non-additive) value functions for which no PO+EF division exists. However, if there are 2 agents and at least one of them has an additive value function, then a PO+EF division exists. [6]
Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics, and dispute resolution. The central tenet of fair division is that such a division should be performed by the players themselves, without the need for external arbitration, as only the players themselves really know how they value the goods.
An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.
Consensus splitting, also called exact division, is a partition of a continuous resource ("cake") into some k pieces, such that each of n people with different tastes agree on the value of each of the pieces. For example, consider a cake which is half chocolate and half vanilla. Alice values only the chocolate and George values only the vanilla. The cake is divided into three pieces: one piece contains 20% of the chocolate and 20% of the vanilla, the second contains 50% of the chocolate and 50% of the vanilla, and the third contains the rest of the cake. This is an exact division (with k = 3 and n = 2), as both Alice and George value the three pieces as 20%, 50% and 30% respectively. Several common variants and special cases are known by different terms:
Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair – each person should receive a piece believed to be a fair share.
A strongly proportional division is a kind of a fair division. It is a division of resources among n partners, in which the value received by each partner is strictly more than his/her due share of 1/n of the total value. Formally, in a strongly proportional division of a resource C among n partners, each partner i, with value measure Vi, receives a share Xi such that
.
Group envy-freeness is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation.
The fair pie-cutting problem is a variation of the fair cake-cutting problem, in which the resource to be divided is circular.
Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:
Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:
A proportional cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the proportionality criterion, namely, that every partner feels that his allocated share is worth at least 1/n of the total.
Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.
Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.
In the fair cake-cutting problem, the partners often have different entitlements. For example, the resource may belong to two shareholders such that Alice holds 8/13 and George holds 5/13. This leads to the criterion of weighted proportionality (WPR): there are several weights that sum up to 1, and every partner should receive at least a fraction of the resource by their own valuation.
Symmetric fair cake-cutting is a variant of the fair cake-cutting problem, in which fairness is applied not only to the final outcome, but also to the assignment of roles in the division procedure.
Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake.
When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.
In computer science, the Robertson–Webb (RW) query model is a model of computation used by algorithms for the problem of fair cake-cutting. In this problem, there is a resource called a "cake", and several agents with different value measures on the cake. The goal is to divide the cake among the agents such that each agent will consider his/her piece as "fair" by his/her personal value measure. Since the agents' valuations can be very complex, they cannot - in general - be given as inputs to a fair division algorithm. The RW model specifies two kinds of queries that a fair division algorithm may ask the agents: Eval and Cut. Informally, an Eval query asks an agent to specify his/her value to a given piece of the cake, and a Cut query asks an agent to specify a piece of cake with a given value.
In economics and computer science, Fractional Pareto efficiency or Fractional Pareto optimality (fPO) is a variant of Pareto efficiency used in the setting of fair allocation of discrete objects. An allocation of objects is called discrete if each item is wholly allocated to a single agent; it is called fractional if some objects are split among two or more agents. A discrete allocation is called Pareto-efficient (PO) if it is not Pareto-dominated by any discrete allocation; it is called fractionally Pareto-efficient (fPO) if it is not Pareto-dominated by any discrete or fractional allocation. So fPO is a stronger requirement than PO: every fPO allocation is PO, but not every PO allocation is fPO.
Egalitarian cake-cutting is a kind of fair cake-cutting in which the fairness criterion is the egalitarian rule. The cake represents a continuous resource, that has to be allocated among people with different valuations over parts of the resource. The goal in egalitarian cake-cutting is to maximize the smallest value of an agent; subject to this, maximize the next-smallest value; and so on. It is also called leximin cake-cutting, since the optimization is done using the leximin order on the vectors of utilities.