Egalitarian item allocation

Last updated

Egalitarian item allocation, also called max-min item allocation is a fair item allocation problem, in which the fairness criterion follows the egalitarian rule. The goal is to maximize the minimum value of an agent. That is, among all possible allocations, the goal is to find an allocation in which the smallest value of an agent is as large as possible. In case there are two or more allocations with the same smallest value, then the goal is to select, from among these allocations, the one in which the second-smallest value is as large as possible, and so on (by the leximin order). Therefore, an egalitarian item allocation is sometimes called a leximin item allocation.

Contents

The special case in which the value of each item j to each agent is either 0 or some constant vj is called the santa claus problem: santa claus has a fixed set of gifts, and wants to allocate them among children such that the least-happy child is as happy as possible.

Some related problems are:

Normalization

There are two variants of the egalitarian rule: [1]

The two rules are equivalent when the agents' valuations are already normalized, that is, all agents assign the same value to the set of all items. However, they may differ with non-normalized valuations. For example, if there are four items, Alice values them at 1,1,1,1 and George values them at 3,3,3,3, then the absolute-leximin rule would give three items to Alice and one item to George, since the utility profile in this case is (3,3), which is optimal. In contrast, the relative-leximin rule would give two items to each agent, since the normalized utility profile in this case, when the total value of both agents is normalized to 1, is (0.5,0.5), which is optimal.

Exact algorithms

Although the general problem is NP-hard, small instances can be solved exactly by constraint programming techniques.

Randomized algorithms

Demko and Hill [4] present a randomized algorithm that attains an egalitarian item allocation in expectation.

Approximation algorithms

Below, n is the number of agents and m is the number of items.

For the special case of the santa claus problem:

For the general case, for agents with additive valuations:

For agents with submodular utility functions:

Ordinally egalitarian allocations

The standard egalitarian rule requires that each agent assigns a numeric value to each object. Often, the agents only have ordinal utilities. There are two generalizations of the egalitarian rule to ordinal settings.

1. Suppose agents have an ordinal ranking over the set of bundles. Given any discrete allocation, for any agent i, define r(i) as the rank of agent i's bundle, so that r(i)=1 if i got his best bundle, r(i)=2 if i got his second-best bundle, etc. This r is a vector of size n (the number of agents). An ordinally-egalitarian allocation is one that minimizes the largest element in r. The Decreasing Demand procedure finds an ordinally-egalitarian allocation for any number of agents with any ordering of bundles.

2. Suppose agents have an ordinal ranking over the set of items. Given any discrete or fractional allocation, for any agent i and positive integer k, define t(i,k) as the total fraction that agent i receives from his k topmost indifference classes. This t is a vector of size at most n*m, where n is the number of agents and m is the number of items. An ordinally-egalitarian allocation is one that maximizes the vector t in the leximin order. The Simultaneous Eating algorithm with equal eating speeds is the unique rule that returns an ordinally-egalitarian allocation. [19]

Comparison to other fairness criteria

Proportionality

Whenever a proportional allocation exists, the relative-leximin allocation is proportional. This is because, in a proportional allocation, the smallest relative value of an agent is at least 1/n, so the same must hold when we maximize the smallest relative value. However, the absolute-leximin allocation might not be proportional, as shown in the example above.

Envy-freeness

1. When all agents have identical valuations with nonzero marginal utilities, any relative-leximin allocation is PO and EFX.

2. For two agents with additive valuations, any relative-leximin allocation is EF1. [20] :Thm.5.5 However:

3. When all agents have valuations that are matroid rank functions (i.e., submodular with binary marginals), the set of absolute-leximin allocations is equivalent to the set of max-product allocations; all such allocations are max-sum and EF1. [21]

4. In the context of indivisible allocation of chores (items with negative utilities), with 3 or 4 agents with additive valuations, any leximin-optimal allocation is PROP1 and PO; with n agents with general identical valuations, any leximin-optimal allocation is EFX. [23]

Maximin share

When all agents have identical valuations, the egalitarian allocation, by definition, gives each agent at least his/her maximin share.

However, when agents have different valuations, the problems are different. The maximin-share allocation is a satisfaction problem: the goal is to guarantee that each agent receives a value above the identical-valuations threshold. In contrast, the egalitarian allocation is an optimization problem: the goal is to give each agent as high value as possible. In some instances, the resulting allocations might be very different. For example, suppose there are four goods and three agents who value them at {3,0,0,0}, {3-2ε,ε,ε,0} and {1-2ε,1,1,2ε} (where ε is a small positive constant). Note that the valuations are normalized (the total value is 3), so absolute-leximin and relative-leximin are equivalent.

The example can be extended to 1-out-of-k MMS for any k>3. There are k+1 goods and three agents who value them at {k, 0, ..., 0}, {k-(k-1)ε, ε, ..., ε, 0} and {1-, 1, 1, ..., kε}. The leximin utility profile must be (k, kε, kε) while the 1-out-of-k MMS of agent 3 is 1.

Real-world application

The leximin rule has been used for fairly allocating unused classrooms in public schools to charter schools. [24]

Related Research Articles

Entitlement in fair division describes that proportion of the resources or goods to be divided that a player can expect to receive. In many fair division settings, all agents have equal entitlements, which means that each agent is entitled to 1/n of the resource. But there are practical settings in which agents have different entitlements. Some examples are:

Equitable (EQ) cake-cutting is a kind of a fair cake-cutting problem, in which the fairness criterion is equitability. It is a cake-allocation in which the subjective value of all partners is the same, i.e., each partner is equally happy with his/her share. Mathematically, that means that for all partners i and j:

Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

A random-sampling mechanism (RSM) is a truthful mechanism that uses sampling in order to achieve approximately-optimal gain in prior-free mechanisms and prior-independent mechanisms.

A Prior-independent mechanism (PIM) is a mechanism in which the designer knows that the agents' valuations are drawn from some probability distribution, but does not know the distribution.

Bayesian-optimal pricing is a kind of algorithmic pricing in which a seller determines the sell-prices based on probabilistic assumptions on the valuations of the buyers. It is a simple kind of a Bayesian-optimal mechanism, in which the price is determined in advance without collecting actual buyers' bids.

Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent.

Truthful resource allocation is the problem of allocating resources among agents with different valuations over the resources, such that agents are incentivized to reveal their true valuations over the resources.

Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the 1-out-of-n maximin-share is the maximum value that can be gained by partitioning the items into parts and taking the part with the minimum value. An allocation of items among agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-n maximin-share. MMS fairness is a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split ( of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different.

Envy-free pricing is a kind of fair item allocation. There is a single seller that owns some items, and a set of buyers who are interested in these items. The buyers have different valuations to the items, and they have a quasilinear utility function; this means that the utility an agent gains from a bundle of items equals the agent's value for the bundle minus the total price of items in the bundle. The seller should determine a price for each item, and sell the items to some of the buyers, such that there is no envy. Two kinds of envy are considered:

When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.

Proportional item allocation is a fair item allocation problem, in which the fairness criterion is proportionality - each agent should receive a bundle that they value at least as much as 1/n of the entire allocation, where n is the number of agents.

Online fair division is a class of fair division problems in which the resources, or the people to whom they should be allocated, or both, are not all available when the allocation decision is made. Some situations in which not all resources are available include:

The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem has several variants:

Egalitarian cake-cutting is a kind of fair cake-cutting in which the fairness criterion is the egalitarian rule. The cake represents a continuous resource, that has to be allocated among people with different valuations over parts of the resource. The goal in egalitarian cake-cutting is to maximize the smallest value of an agent; subject to this, maximize the next-smallest value; and so on. It is also called leximin cake-cutting, since the optimization is done using the leximin order on the vectors of utilities.

Fair division among groups is a class of fair division problems, in which the resources are allocated among groups of agents, rather than among individual agents. After the division, all members in each group consume the same share, but they may have different preferences; therefore, different members in the same group might disagree on whether the allocation is fair or not. Some examples of group fair division settings are:

Fair allocation of items and money is a class of fair item allocation problems in which, during the allocation process, it is possible to give or take money from some of the participants. Without money, it may be impossible to allocate indivisible items fairly. For example, if there is one item and two people, and the item must be given entirely to one of them, the allocation will be unfair towards the other one. Monetary payments make it possible to attain fairness, as explained below.

The welfare maximization problem is an optimization problem studied in economics and computer science. Its goal is to partition a set of items among agents with different utility functions, such that the welfare – defined as the sum of the agents' utilities – is as high as possible. In other words, the goal is to find an item allocation satisfying the utilitarian rule.

References

  1. Segal-Halevi, Erel; Sziklai, Balázs R. (2019-09-01). "Monotonicity and competitive equilibrium in cake-cutting". Economic Theory. 68 (2): 363–401. arXiv: 1510.05229 . doi:10.1007/s00199-018-1128-6. ISSN   1432-0479. S2CID   179618.
  2. Bouveret, Sylvain; Lemaître, Michel (2009-02-01). "Computing leximin-optimal solutions in constraint networks". Artificial Intelligence. 173 (2): 343–364. doi: 10.1016/j.artint.2008.10.010 . ISSN   0004-3702.
  3. Dall'Aglio, Marco; Mosca, Raffaele (2007). "How to allocate hard candies fairly". Mathematical Social Sciences. 54 (3): 218. CiteSeerX   10.1.1.330.2617 . doi:10.1016/j.mathsocsci.2007.04.008.
  4. Demko, Stephen; Hill, Theodore P. (1988-10-01). "Equitable distribution of indivisible objects". Mathematical Social Sciences. 16 (2): 145–158. doi:10.1016/0165-4896(88)90047-9. ISSN   0165-4896.
  5. Bansal, Nikhil; Sviridenko, Maxim (2006). "The Santa Claus problem". Proceedings of the thirty-eighth annual ACM symposium on Theory of computing - STOC '06. p. 31. doi:10.1145/1132516.1132522. ISBN   1595931341.
  6. Feige, Uriel (2008-01-20). "On allocations that maximize fairness". Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '08. San Francisco, California: Society for Industrial and Applied Mathematics: 287–293.
  7. Asadpour, Arash; Feige, Uriel; Saberi, Amin (2008). "Santa Claus Meets Hypergraph Matchings". In Goel, Ashish; Jansen, Klaus; Rolim, José D. P.; Rubinfeld, Ronitt (eds.). Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. Lecture Notes in Computer Science. Vol. 5171. Berlin, Heidelberg: Springer. pp. 10–20. doi:10.1007/978-3-540-85363-3_2. ISBN   978-3-540-85363-3.
  8. Annamalai, Chidambaram; Kalaitzis, Christos; Svensson, Ola (2017-05-26). "Combinatorial Algorithm for Restricted Max-Min Fair Allocation". ACM Transactions on Algorithms. 13 (3): 37:1–37:28. arXiv: 1409.0607 . doi:10.1145/3070694. ISSN   1549-6325. S2CID   14749011.
  9. Davies, Sami; Rothvoss, Thomas; Zhang, Yihao (2018-07-18). A tale of Santa Claus, hypergraphs and matroids. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2020. pp. 2748–2757. doi:10.1137/1.9781611975994.
  10. Bezáková, Ivona; Dani, Varsha (2005). "Allocating indivisible goods". ACM SIGecom Exchanges. 5 (3): 11. CiteSeerX   10.1.1.436.18 . doi:10.1145/1120680.1120683. S2CID   1176760.
  11. Lenstra, Jan Karel; Shmoys, David B.; Tardos, Éva (1990-01-01). "Approximation algorithms for scheduling unrelated parallel machines". Mathematical Programming. 46 (1): 259–271. doi:10.1007/BF01585745. ISSN   1436-4646. S2CID   52867171.
  12. Asadpour, Arash; Saberi, Amin (2010-01-01). "An Approximation Algorithm for Max-Min Fair Allocation of Indivisible Goods". SIAM Journal on Computing. 39 (7): 2970–2989. doi:10.1137/080723491. ISSN   0097-5397.
  13. Chakrabarty, D.; Chuzhoy, J.; Khanna, S. (2009-10-01). "On Allocating Goods to Maximize Fairness". 2009 50th Annual IEEE Symposium on Foundations of Computer Science. pp. 107–116. arXiv: 0901.0205 . doi:10.1109/FOCS.2009.51. ISBN   978-1-4244-5116-6. S2CID   165160.
  14. 1 2 Golovin, Daniel (2005). "Max-min fair allocation of indivisible goods". CMU. Retrieved 27 August 2016.
  15. Woeginger, Gerhard J. (2000-02-01). "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?". INFORMS Journal on Computing. 12 (1): 57–74. doi:10.1287/ijoc.12.1.57.11901. ISSN   1091-9856.
  16. Goemans, Michel X.; Harvey, Nicholas J. A.; Iwata, Satoru; Mirrokni, Vahab (2009-01-04), "Approximating Submodular Functions Everywhere", Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algorithms, Proceedings, Society for Industrial and Applied Mathematics, pp. 535–544, doi:10.1137/1.9781611973068.59, hdl: 1721.1/60671 , ISBN   978-0-89871-680-1, S2CID   14308006 , retrieved 2020-11-22
  17. Nguyen, Trung Thanh; Roos, Magnus; Rothe, Jörg (2013). "A survey of approximability and inapproximability results for social welfare optimization in multiagent resource allocation". Annals of Mathematics and Artificial Intelligence. 68 (1–3): 65–90. CiteSeerX   10.1.1.671.3497 . doi:10.1007/s10472-012-9328-4. S2CID   6864410.
  18. Nguyen, Nhan-Tam; Nguyen, Trung Thanh; Roos, Magnus; Rothe, Jörg (2013). "Computational complexity and approximability of social welfare optimization in multiagent resource allocation". Autonomous Agents and Multi-Agent Systems. 28 (2): 256. doi:10.1007/s10458-013-9224-2. S2CID   442666.
  19. Bogomolnaia, Anna (2015-07-01). "Random assignment: Redefining the serial rule". Journal of Economic Theory. 158: 308–318. doi:10.1016/j.jet.2015.04.008. ISSN   0022-0531.
  20. 1 2 Plaut, Benjamin; Roughgarden, Tim (2020-01-01). "Almost Envy-Freeness with General Valuations". SIAM Journal on Discrete Mathematics. 34 (2): 1039–1068. arXiv: 1707.04769 . doi:10.1137/19M124397X. ISSN   0895-4801. S2CID   216283014.
  21. 1 2 Benabbou, Nawal; Chakraborty, Mithun; Igarashi, Ayumi; Zick, Yair (2020). "Finding Fair and Efficient Allocations when Valuations Don't Add up". Algorithmic Game Theory. Lecture Notes in Computer Science. Vol. 12283. pp. 32–46. arXiv: 2003.07060 . doi:10.1007/978-3-030-57980-7_3. ISBN   978-3-030-57979-1. S2CID   208328700.
  22. Caragiannis, Ioannis; Kurokawa, David; Moulin, Hervé; Procaccia, Ariel D.; Shah, Nisarg; Wang, Junxing (2019-09-24). "The Unreasonable Fairness of Maximum Nash Welfare". ACM Transactions on Economics and Computation. 7 (3): 12:1–12:32. doi: 10.1145/3355902 . ISSN   2167-8375. S2CID   202729326.
  23. Chen, Xingyu; Liu, Zijie (2020-05-11). "The Fairness of Leximin in Allocation of Indivisible Chores". arXiv: 2005.04864 [cs.GT].
  24. Kurokawa, David; Procaccia, Ariel D.; Shah, Nisarg (2015-06-15). "Leximin Allocations in the Real World". Proceedings of the Sixteenth ACM Conference on Economics and Computation. EC '15. Portland, Oregon, USA: Association for Computing Machinery. pp. 345–362. doi:10.1145/2764468.2764490. ISBN   978-1-4503-3410-5. S2CID   1060279.