Eigenvalues and eigenvectors of the second derivative

Last updated

Explicit formulas for eigenvalues and eigenvectors of the second derivative with different boundary conditions are provided both for the continuous and discrete cases. In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid.

Contents

These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

The continuous case

The index j represents the jth eigenvalue or eigenvector and runs from 1 to . Assuming the equation is defined on the domain , the following are the eigenvalues and normalized eigenvectors. The eigenvalues are ordered in descending order.

Pure Dirichlet boundary conditions

Pure Neumann boundary conditions

Periodic boundary conditions

(That is: is a simple eigenvalue and all further eigenvalues are given by , , each with multiplicity 2).

Mixed Dirichlet-Neumann boundary conditions

Mixed Neumann-Dirichlet boundary conditions

The discrete case

Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

Pure Dirichlet boundary conditions

[1]

Pure Neumann boundary conditions

Periodic boundary conditions

(Note that eigenvalues are repeated except for 0 and the largest one if n is even.)

Mixed Dirichlet-Neumann boundary conditions

Mixed Neumann-Dirichlet boundary conditions

Derivation of Eigenvalues and Eigenvectors in the Discrete Case

Dirichlet case

In the 1D discrete case with Dirichlet boundary conditions, we are solving

Rearranging terms, we get

Now let . Also, assuming , we can scale eigenvectors by any nonzero scalar, so scale so that .

Then we find the recurrence

Considering as an indeterminate,

where is the kth Chebyshev polynomial of the 2nd kind.

Since , we get that

.

It is clear that the eigenvalues of our problem will be the zeros of the nth Chebyshev polynomial of the second kind, with the relation .

These zeros are well known and are:

Plugging these into the formula for ,

And using a trig formula to simplify, we find

Neumann case

In the Neumann case, we are solving

In the standard discretization, we introduce and and define

The boundary conditions are then equivalent to

If we make a change of variables,

we can derive the following:

with being the boundary conditions.

This is precisely the Dirichlet formula with interior grid points and grid spacing . Similar to what we saw in the above, assuming , we get

This gives us eigenvalues and there are . If we drop the assumption that , we find there is also a solution with and this corresponds to eigenvalue .

Relabeling the indices in the formula above and combining with the zero eigenvalue, we obtain,

Dirichlet-Neumann Case

For the Dirichlet-Neumann case, we are solving

,

where

We need to introduce auxiliary variables

Consider the recurrence

.

Also, we know and assuming , we can scale so that

We can also write

Taking the correct combination of these three equations, we can obtain

And thus our new recurrence will solve our eigenvalue problem when

Solving for we get

Our new recurrence gives

where again is the kth Chebyshev polynomial of the 2nd kind.

And combining with our Neumann boundary condition, we have

A well-known formula relates the Chebyshev polynomials of the first kind, , to those of the second kind by

Thus our eigenvalues solve

The zeros of this polynomial are also known to be

And thus

Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.

Related Research Articles

<i>Bremsstrahlung</i> Type of electromagnetic radiation

Bremsstrahlung, from bremsen "to brake" and Strahlung "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

Spheroid Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

Special unitary group Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude and direction, both of which are important. Its magnitude is either the wavenumber or angular wavenumber of the wave, and its direction is ordinarily the direction of wave propagation.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the object is given by the Fresnel diffraction equation.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.

In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In statistical mechanics, the two-dimensional square lattice Ising model is a simple lattice model of interacting magnetic spins. The model is notable for having nontrivial interactions, yet having an analytical solution. The model was solved by Lars Onsager for the special case that the external magnetic field H = 0.(Onsager ) An analytical solution for the general case for has yet to be found.

The expander mixing lemma intuitively states that the edges of certain -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets and is always close to the expected number of edges between them in a random -regular graph, namely .

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The matrix was introduced in 1927 by Eugene Wigner. D stands for Darstellung, which means "representation" in German.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element.

The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer. It is used in the determination of size of crystals in the form of powder.

Geographical distance Distance measured along the surface of the earth

Geographical distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.

The article Transverse Mercator projection restricts itself to general features of the projection. This article describes in detail one of the (two) implementations developed by Louis Krüger in 1912; that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946, by Redfearn in 1948, and by Thomas in 1952. They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, in national and also international mapping systems, including the Universal Transverse Mercator coordinate system (UTM). They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency. When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Propeller theory is the science governing the design of efficient propellers. A propeller is the most common propulsor on ships, and on small aircraft.

References

  1. F. Chung, S.-T. Yau, Discrete Green's Functions, Journal of Combinatorial Theory A 91, 191-214 (2000).