Electrochemical coloring of metals is a process in which the surface color of metal is changed by electrochemical techniques, i.e. cathodic or anodic polarization. The first method of electrochemical coloring of metals are certainly Nobili's colored rings, discovered by Leopoldo Nobili, an Italian physicist in 1826. [1] [2] In addition to the multicolored coatings mentioned, he has also been able to obtain monochrome coatings, and he called that technique metallocromia. Electrochemical coloring of metals based processes are black, green and blue nickel plating, black chromium plating, black rhodium plating and black ruthenium plating. [3] [4] Anodic oxidation of aluminum, titanium, niobium, tantalum and stainless steel are also electrochemical colouring processes. Multi-colored and green electrolytic patinas for copper and its alloys are also significant.
Apart from Leopoldo Nobili, who already in 1824 performed his first experiments related to the appearance of Nobili's rings, Leonhard Elsner, Alexander Watt, Antoine César Becquerel (1788–1878) and Rudolf Christian Böttger (1806–1881) also dealt with the electrochemical coloring of metals in that early period. [5] [6] [7] [8] It should also be mentioned that in 1768. Joseph Priestley (1733–1804) recorded similar phemomen and that the described phenomenon was called Priestley's or fairy rings, but Priestley used a Leiden bottle and a metal spike, and the rings were formed on a metal plate concentrically around the point of an explosive electrical discharge. [9] We also know that George Richards Elkington (1801–1865), otherwise known for his patent for galvanic gilding and silver plating from 1840 patented at least one process of electrochemical coloring of metals (the American J.E .Stareck developed ten variants of his process around 1937). [10] At the end of the 19th century, Lismann (DRP. 93543) and at the beginning of the 20th century, Setlik developed the first electrolytic processes for dyeing copper green, these processes was further developed between the 2 world wars and again after the World War II. [11] Around the same time, the first procedures for electrolytic browning of steel were developed (HL Hollis' patent USPT 621,084 from 1899 was the first attempt in this direction, but Becquerel reported on this already in 1861). [12] [13] While the aforementioned deal with this issue primarily for protection against corrosion, the English patent 106,774 from 1916 and the American patent by T. Rondelli and Q. Sestini USPT 1,386,076 from 1921 are also oriented towards the chemical coloring of steel, and iron as the goal of the procedure.
Black nickel plating was developed around 1905, and between the two wars, black chrome plating (first German patent 1929.GP 607, 420), which saw wider use only from the mid-1950s. [14] After the First World War, the first procedures for anodic oxidation and coloring of anodically oxidized aluminium were developed (1923, 1924.DRP. 413876). In the 1960s, procedures were developed for the anodic oxidation of titanium, a little later niobium and tantalum, and a little bit earlier stainless steel (circa 1957 patent US 2957812 A). [15] Unlike anodically oxidized aluminum, these procedures do not involve an oxide layer that can be colored with special dyes, but interference colors .
Several significant procedures were also developed in the former Soviet Union after the Second World War, the Ukrainian A.P. Eitchis developed several complex, but also original procedures, which included the electrochemical coloring of metals (Kristalit, Iskrit, Sloit, Texturit - His work was strongly influenced by already mentioned J.E.Stareck). [16] Chrome agate and chrome oxide processes were developed in the USSR, they were special versions of black chrome plating. [17]
Black nickel plating, blue nickel plating, green nickel plating, black chrome, chrome agate, chrome oxide, black molybdenum, black manganese, black zinc, black platinum, black palladium, black rhodium, blue rhodium, red rhodium, black ruthenium, Elkington solution, Electrocolor process, Bancroft's Blue. Among the coatings that are no longer used due to their toxicity and European ROHS regulations, we can mention coatings based on arsenic (the so-called shiny gray oxide) and lead . [18]
Nobili rings, Lismann green for copper and alloys, anodic oxidation of aluminum, magnesium, titanium, niobium, tantalum, tungsten, carbon steel and stainless steel, silver, copper and its alloys, tin, chromium and zinc. [19]
39 gr of lead acetate
100 ml of distilled water
cathode made of platinum or stainless steel (needle), anode nickel-plated or gold-plated copper or brass or polished steel, duration 10 s, distance between cathode and anode 3 mm . [20] An electrolyte of 100 g of litharge dissolved in 0.5 l of water can also be used in which 100 g of NaOH is dissolved. Becquerel used a solution of 200 parts water, 20 potassium hydroxide and 15 litharge. A. Roseleur used a much milder solution of 200 parts of water, 10 parts of potassium hydroxide and 1 part of litharge. [21]
copper sulfate 75 gr/lit
Sodium hydroxide 75 gr/lit
lactic acid 126ml/lit
copper anodes, 0.25/A per square foot, gives various colors on copper and alloys, depending on the duration of the process, a large number of variations on this process have been developed, the most famous is the American Elektrocolor process developed by J.E.Stareck, Russian literature mentions more than 10 variants [22] [23] [10]
A 3% trisodium phosphate solution can be used as a simple electrolyte, a stainless steel cathode, an object as an anode. The colors depend on the DC voltage. It is possible to use numerous other electrolytes - allegedly even Coca-Cola. Straw Yellow/10v - Magenta/29v - Blue/30v - Blue Green/45v - Bright Green/55v - Magenta Red/75v - Gray/110v It is mandatory to do this process with rubber gloves - potentially dangerous voltage. [24] [25] [26]
nickel sulfate 75 gr/lit
nickel ammonium sulfate 45 gr/lit
zinc sulfate 37.5 gr/lit
ammonium thiocyanate 15 gr / lit
pH 5.6 - 5.9, temp. 55C, 0.5 - 1.5 V, 5 - 20 A /per square foot, nickel carbon anodes [27] [28]
sulfuric acid 250 ml/lit
sodium bichromate 60 gr/lit
water 1 lit
0.6 A/per square foot, 70 - 95 C, lead cathode, gives brown, blue, purple and green color depending on the duration of the process, there are many variants of this process. [29] According to Russian literature, after processing, the objects should be soaked in a solution of potassium bichromate (5-10%), 5 – 15 minutes, 70 - 90 C solution temperature. [30] According to a Chinese patent, additionally objects can then be treated with a hot sodium waterglass solution (1 - 5%, 95-100 C, 3 - 10 min.). [31] As hexavalent chromium compounds are prohibited for use in the EU based on ROHS regulations and are toxic and carcinogenic, solutions based on molybdate are proposed as a replacement (e.g. molybdate 30-100g/ boric acid 10-18 g/manganese sulfate 0.5 g /1 liter of water, 0.1 - 20 A/dm2, 0.1–15 minutes). [32] [33]
sodium hydroxide 700 gr
water 1 lit
5 - 10 A/dm2, 60 - 70 C temp., 30 – 40 minutes [34]
Sodium hydroxide 150 - 200 gr
water 1 lit
up to 2 A/dm2,80-100 C,10 – 30 minutes [34]
chromium anhydride 300 – 400 gr
barium acetate 5 – 10 gr
zinc acetate 2 – 5 gr
calcium acetate 4 – 8 gr
water 1 liter, 30 - 40 C, 30 - 100A/dm2, duration 10 - 20 min, 6 - 9v, distance object anode 30 - 100mm. A variant of this procedure is the so-called chromium oxide procedure (250 - 300 gr of chromium anhydride, 1 - 5 gr of potassium ferrocyanide, 20 - 100 A/dm2, max. 25 C) [35]
Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.
Stainless steel, also known as inox, corrosion-resistant steel (CRES), and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen.
Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode of an electrolytic cell; the electrolyte is a solution of a salt whose cation is the metal to be coated, and the anode is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply.
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.
In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. Undesired passivation of electrodes, called "fouling", increases the circuit resistance so it interferes with some electrochemical applications such as electrocoagulation for wastewater treatment, amperometric chemical sensing, and electrochemical synthesis.
Chrome plating is a technique of electroplating a thin layer of chromium onto a metal object. A chrome plated part is called chrome, or is said to have been chromed. The chromium layer can be decorative, provide corrosion resistance, facilitate cleaning, and increase surface hardness. Sometimes a less expensive substitute for chrome, such as nickel, may be used for aesthetic purposes.
Electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing, is an electrochemical process that removes material from a metallic workpiece, reducing the surface roughness by levelling micro-peaks and valleys, improving the surface finish. Electropolishing is often compared to, but distinctly different from, electrochemical machining. It is used to polish, passivate, and deburr metal parts. It is often described as the reverse of electroplating. It may be used in lieu of abrasive fine polishing in microstructural preparation.
Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.
Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.
Copper electroplating is the process of electroplating a layer of copper onto the surface of a metal object. Copper is used both as a standalone coating and as an undercoat onto which other metals are subsequently plated. The copper layer can be decorative, provide corrosion resistance, increase electrical and thermal conductivity, or improve the adhesion of additional deposits to the substrate.
The galvanic series determines the nobility of metals and semi-metals. When two metals are submerged in an electrolyte, while also electrically connected by some external conductor, the less noble (base) will experience galvanic corrosion. The rate of corrosion is determined by the electrolyte, the difference in nobility, and the relative areas of the anode and cathode exposed to the electrolyte. The difference can be measured as a difference in voltage potential: the less noble metal is the one with a lower electrode potential than the nobler one, and will function as the anode within the electrolyte device functioning as described above. Galvanic reaction is the principle upon which batteries are based.
Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.
Electroless nickel-phosphorus plating, also referred to as E-nickel, is a chemical process that deposits an even layer of nickel-phosphorus alloy on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containing nickel salt and a phosphorus-containing reducing agent, usually a hypophosphite salt. It is the most common version of electroless nickel plating and is often referred by that name. A similar process uses a borohydride reducing agent, yielding a nickel-boron coating instead.
A conversion coating is a chemical or electro-chemical treatment applied to manufactured parts that superficially converts the material into a thin adhering coating of an insoluble compound. These coatings are commonly applied to protect the part against corrosion, to improve the adherence of other coatings, for lubrication, or for aesthetic purposes.
Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating. The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte. The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of "Steel, Electrogalvanized, Cold-rolled, Commercial quality". Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:
Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.
Nickel electroplating is a technique of electroplating a thin layer of nickel onto a metal object. The nickel layer can be decorative, provide corrosion resistance, wear resistance, or used to build up worn or undersized parts for salvage purposes.
Galvanic corrosion is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte. A similar galvanic reaction is exploited in primary cells to generate a useful electrical voltage to power portable devices. This phenomenon is named after Italian physician Luigi Galvani (1737–1798).
Chemical coloring of metals is the process of changing the color of metal surfaces with different chemical solutions.
Hiorns, A. (1907). Metal Colouring and Bronzing. London: Macmillan and Co. OCLC 3757279.
Kaup, W. J. (1914). Metal Coloring and Finishing. New York City: Industrial Press.
Field, S. (1925). The Chemical Coloring of Metals and Allied Processes. London: Chapman & Hall, Ltd. OCLC 2922065.
Fishlock, D. (1962). Metal Colouring. Teddington: R. Draper. OCLC 3982659.
Hughes, R.; Rowe, M. (1991). The Colouring, Bronzing and Patination of Metals (3rd ed.). London: Thames and Hudson. ISBN 9780500015018. OCLC 24734412.
LaNiece, S.; Craddock, P. (1993). Metal Plating and Patination: Cultural, Technical and Historical Developments. Oxford: Butterworth-Heinemann. ISBN 9780750616119. OCLC 27336439.
Young, R.D. (2000). Contemporary Patination (5th ed.). Escondido: Sculpt-Nouveau. ISBN 9780960374410.
Kipper, P. (2003). Pátinas for Silicon Bronze (2nd ed.). Loveland: Path Publications. ISBN 9780964726901. OCLC 930605479.