Embedded intelligence

Last updated

Embedded intelligence is characterized as the ability of a product, process, or service to reflect on its own operational performance, usage load, or environment. The motivation for this may be to enhance the performance, lifetime, or quality of the product. This self-reflection might be facilitated by information collected via embedded sensors, and processed locally or communicated remotely for processing.

Contents

Embedded intelligence depends on a multidisciplinary approach for successful implementation.

Characteristics and purposes

Embedded intelligence aims to deliver smarter products, systems and services to industry through their integration and purposeful use for particular applications. It can be realized by:

Embedded intelligence can serve many purposes, including:

Applications

Health of high-value assets

High-value products and assets are deployed across a myriad of industrial sectors, ranging from transport, aviation, power networks, etc. Such assets present significant challenges in terms of their design, operation, and maintenance due to limitations in the visibility of the assets’ health. The ability to monitor these assets is impeded by aggressive ambient conditions influencing sensor drift and failure, power management, and communication issues.

Today's networks for transport (infrastructure, signalling and services in, for example train-lines), and power transmission (i.e. smart grid, network management, protection and control) require integrated sensors that can collect reliable information, transmit it securely, and turn it from data-to-knowledge into action to close the loop. That feedback allows the system/product to build resilience and agility. [2]

Intelligent tags in car manufacturing

When car manufacturers embedded intelligent tags into the majority of their components, temperature, vibration, and other essential data can be harvested throughout the life-cycle of a car. The interrogation of fuzzy Bayesian network ontologies would enable the identification and prediction of faulty components that could be replaced and re-engineered to ensure greater reliability. The ontologies could also determine the genres of cars that need to be recalled - given driving history - thus lowering recall costs and enhancing the consumer experience.

UK government perspective and industry need

There is an industry need for trained engineers in electronics systems as further growth is striven for within the UK, as delineated in the recently published “Electronics Systems: Challenges and Opportunities” (ESCO Report). This report has brought industry leaders and government together to deliver ambitious growth targets that by 2020 will see a further 150,000 people employed in electronic systems, such as those this CDT aims to provide. The report states that the critical shortages in highly trained and skilled employees can be addressed in part by the provision of Centers of Doctoral Training (CDTs) to fund and train PhD students. The Technology Strategy Board's (TSB) High-Value Manufacturing study also identified strategic themes of “Creating innovative products, through the integration of new materials, coatings, and electronics with new manufacturing technologies” and “Increasing the global competitiveness of UK manufacturing technologies by creating more efficient and effective manufacturing systems”.

The report identified the need for National Competencies, including “Intelligent systems and embedded electronics”. Additionally through the “Electronics, Photonics and Electrical Systems: Key technology area 2008-2011” report, the TSB are promoting Embedded Systems as a technology that the UK has the high capability and high market potential.

Within the Europe, there is also significant investment being made through the ENIAC, Artemis and EPoSS programs that are set to continue to Horizon 2020 and will see close to €5 billion invested over 7 years. [3] The recent Strategic Research Agenda in Smart Systems Integration of the European Technology Platform EPoSS also identified Embedded Intelligence as the key enabler in the design and manufacturing of complex products and services.

Even though what is said above may be factual, but do note that, those needs are different across the world and not may be always compatible with implementing the Embedded Intelligence.

Predicted revenue

While it is relatively immature as a technology, the Internet of Things is likely to see the number of connected objects reach 50 billion by 2020. [4] The integration of embedded processors with sensors, intelligence, wireless connectivity and other components with high level operating systems, middle-ware and system integration services is regarded as a new breed of electronics by Intel. [5] They predict that over the next 10 years “IT devices for industries including medical, manufacturing, transportation, retail, communication, consumer electronics and energy will take a development direction that makes intelligent designs become a part of all of our lifestyles”. [6] Accordingly, they forecast a significant growth for embedded systems (CAGR of 18% from 2011 to 2016). Data also reported by IDC forecasts the worldwide value of the embedded systems market to be worth €1.5 trillion in revenue by 2015 with the automotive, industrial, communications and healthcare sectors.

The Internet of Things

Although the vision for the 'Internet of Things' was first formulated in 1999, the technology road-map is still far from being seamless. The vision of having all objects linked to the internet might be only achievable when technology allows for global adoption. [7] In this regard, Embedded Intelligence can be the key for these emerging technologies to enable globalization.

See also

Related Research Articles

Atmel Corporation was a creator and manufacturer of semiconductors before being subsumed by Microchip Technology in 2016. Atmel was founded in 1984. The company focused on embedded systems built around microcontrollers. Its products included microcontrollers radio-frequency (RF) devices including Wi-Fi, EEPROM, and flash memory devices, symmetric and asymmetric security chips, touch sensors and controllers, and application-specific products. Atmel supplies its devices as standard products, application-specific integrated circuits (ASICs), or application-specific standard product (ASSPs) depending on the requirements of its customers.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in the form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

<span class="mw-page-title-main">Infineon Technologies</span> Semiconductor manufacturing company

Infineon Technologies AG is Germany's largest semiconductor manufacturer. The company was spun-off from Siemens AG in 1999. Infineon has about 58,600 employees in 2023 and is one of the ten largest semiconductor manufacturers worldwide. In 2023 the company achieved sales of €16.309 billion.

<span class="mw-page-title-main">Semiconductor Research Corporation</span> American technology research consortium

Semiconductor Research Corporation (SRC), commonly known as SRC, is a high-technology research consortium active in the semiconductor industry. It is a leading semiconductor research consortium. Todd Younkin is the incumbent president and chief executive officer of the company.

SEMI is an industry association comprising companies involved in the electronics design and manufacturing supply chain. They provide equipment, materials and services for the manufacture of semiconductors, photovoltaic panels, LED and flat panel displays, micro-electromechanical systems (MEMS), printed and flexible electronics, and related micro and nano-technologies.

The International Technology Roadmap for Semiconductors (ITRS) is a set of documents that was coordinated and organized by Semiconductor Research Corporation and produced by a group of experts in the semiconductor industry. These experts were representative of the sponsoring organisations, including the Semiconductor Industry Associations of Taiwan, South Korea, the United States, Europe, Japan, and China.

Machine to machine (M2M) is direct communication between devices using any communications channel, including wired and wireless. Machine to machine communication can include industrial instrumentation, enabling a sensor or meter to communicate the information it records to application software that can use it. Such communication was originally accomplished by having a remote network of machines relay information back to a central hub for analysis, which would then be rerouted into a system like a personal computer.

<span class="mw-page-title-main">Smart transducer</span>

A smart transducer is an analog or digital transducer, actuator, or sensor combined with a processing unit and a communication interface.

Lanner Electronics, Inc. (TSE:6245), is a Taiwanese electronics manufacturer specializing in network appliances, industrial computers, embedded computers, vehicle PCs, motherboards and related accessories. Lanner owns and operates PCB manufacturing, chassis manufacturing and computer assembly factories. The company focuses mainly on OEM/ODM manufacturing for global name brand computer and computer peripheral companies. Lanner's main product lines include network appliance platforms, rugged embedded computers, and telecommunication carrier-grade platforms.

Smart systems are systems which are able to incorporate and perform functions of sensing, actuation, and control in order to analyze a situation, based on acquired data and perform decisions in a predictive or adaptive manner, thereby performing smart actions. In most cases the Intelligence/"smartness" of the system can be attributed to autonomous operation based on closed loop control, resource management, and networking capabilities.

<span class="mw-page-title-main">CEA-Leti: Laboratoire d'électronique des technologies de l'information</span>

CEA-Leti is a research institute for electronics and information technologies, based in Grenoble, France. It is one of the world's largest organizations for applied research in microelectronics and nanotechnology. It is located within the CEA Grenoble center of the French Alternative Energies and Atomic Energy Commission (CEA).

<span class="mw-page-title-main">Tower Semiconductor</span> Integrated circuit manufacturer

Tower Semiconductor Ltd. is an Israeli company that manufactures integrated circuits using specialty process technologies, including SiGe, BiCMOS, Silicon Photonics, SOI, mixed-signal and RFCMOS, CMOS image sensors, non-imaging sensors, power management (BCD), and non-volatile memory (NVM) as well as MEMS capabilities. Tower Semiconductor also owns 51% of TPSCo, an enterprise with Nuvoton Technology Corporation Japan (NTCJ).

<span class="mw-page-title-main">Integrated Device Technology</span> U.S. semiconductor manufacturer

Integrated Device Technology, Inc. (IDT), was an American semiconductor company headquartered in San Jose, California. The company designed, manufactured, and marketed low-power, high-performance mixed-signal semiconductor products for the advanced communications, computing, and consumer industries. The company marketed its products primarily to original equipment manufacturers (OEMs). Founded in 1980, the company began as a provider of complementary metal-oxide semiconductors (CMOS) for the communications business segment and computing business segments. The company focused on three major areas: communications infrastructure, high-performance computing, and advanced power management. Between 2018 and 2019, IDT was acquired by Renesas Electronics.

The IEEE International Electron Devices Meeting (IEDM) is an annual micro- and nanoelectronics conference held each December that serves as a forum for reporting technological breakthroughs in the areas of semiconductor and related device technologies, design, manufacturing, physics, modeling and circuit-device interaction.

AuthenTec, Inc. was a semiconductor, computer security, mobile security, identity management, biometrics, and touch control solutions company based in Melbourne, Florida. Founded in 1998 after being spun off from Harris Semiconductor, AuthenTec provided mobile security software licenses to mobile manufacturing companies, and biometrics sensor technology, such as fingerprint sensors and NFC technology to mobile and computer manufacturers. On 27 July 2012, AuthenTec was acquired by Apple Inc. for $356 million.

An intelligent maintenance system (IMS) is a system that uses collected data from machinery in order to predict and prevent potential failures in them. The occurrence of failures in machinery can be costly and even catastrophic. In order to avoid failures, there needs to be a system which analyzes the behavior of the machine and provides alarms and instructions for preventive maintenance. Analyzing the behavior of the machines has become possible by means of advanced sensors, data collection systems, data storage/transfer capabilities and data analysis tools. These are the same set of tools developed for prognostics. The aggregation of data collection, storage, transformation, analysis and decision making for smart maintenance is called an intelligent maintenance system (IMS).

Universal Electronics Inc. (UEI) is an American smart home technology provider and manufacturer of universal remote controls, IoT devices such as voice-enabled smart home hubs, smart thermostats, home sensors; as well as a white label digital assistant platform optimized for smart home applications, and other software and cloud services for device discovery, fingerprinting and interoperability. The company designs, develops, manufactures and ships products both under the "One For All" brand and as an OEM for other companies in the audio video, subscription broadcasting, connected home, tablet and smart phone markets. In 2015, it expanded its product and technology platform to include home automation, intelligent sensing and security.

Weebit Nano is a public semiconductor IP company founded in Israel in 2015 and headquartered in Hod Hasharon, Israel. The company develops Resistive Random-Access Memory technologies. Resistive Random-Access Memory is a specialized form of non-volatile memory (NVM) for the semiconductor industry. The company’s products are targeted at a broad range of NVM markets where persistence, performance, and endurance are all required. ReRAM technology can be integrated in electronic devices like wearables, Internet of Things (IoT) endpoints, smartphones, robotics, autonomous vehicles, and 5G cellular communications, among other products. Weebit Nano’s IP can be licensed to semiconductor companies and semiconductor fabs.

References

  1. 'More Than Moore' White Paper by the IRC, International Technology Roadmap for Semiconductors: http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf Archived 2012-01-26 at the Wayback Machine
  2. "Alstom and Intel to work hand-in-hand on future smart grid architecture and security".
  3. 'European electronic systems and components to get a major boost' Artemis, 10 July 2013: http://www.artemis-ia.eu/news/frontpage/news/78 Archived 2013-10-29 at the Wayback Machine
  4. "Archived copy". Archived from the original on 2014-07-24. Retrieved 2014-03-21.{{cite web}}: CS1 maint: archived copy as title (link)
  5. “Embedded Innovator, Design Solutions for Intelligent Systems”, 2012 5th Edition, published by the Embedded Alliance, Intel: http://www.onlinedigitalpubs.com/publication/?i=102710#iid=6316
  6. Intel hosts Intelligent Systems Summit 2012 to showcase complete solutions with partners, 6 Nov 2012, Digitimes: http://www.digitimes.com/supply_chain_window/ShowPrint.asp?datePublish=2012/11/06&pages=PR&seq=201
  7. "Internet of Things in 2020: A roadmap for the future", EPoSS, Sep 2008: http://www.smart-systems-integration.org/public/documents/publications/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf Archived 2014-02-11 at the Wayback Machine