Embedment

Last updated

Embedment is a phenomenon in mechanical engineering in which the surfaces between mechanical members of a loaded joint embed. It can lead to failure by fatigue as described below, and is of particular concern when considering the design of critical fastener joints.

Mechanical engineering discipline of engineering

Mechanical engineering is the discipline that applies engineering, physics, engineering mathematics, and materials science principles to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering disciplines.

Bolted joint type of fastener

Bolted joints are one of the most common elements in construction and machine design. They consist of fasteners that capture and join other parts, and are secured with the mating of screw threads.

Contents

Mechanism

The mechanism behind embedment is different from creep. When the loading of the joint varies (e.g. due to vibration or thermal expansion) the protruding points of the imperfect surfaces will see local stress concentrations and yield until the stress concentration is relieved. Over time, surfaces can flatten an appreciable amount in the order of thousandths of an inch.

In materials science, creep is the tendency of a solid material to move slowly or deform permanently under the influence of mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increases as they are near their melting point.

Vibration mechanical phenomenon whereby oscillations occur about an equilibrium point; precisely used to describe mechanical oscillation

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin vibrationem. The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

Thermal expansion The tendency of matter to change volume in response to a change in temperature

Thermal expansion is the tendency of matter to change its shape, area, and volume in response to a change in temperature.

Consequences

In critical fastener joints, embedment can mean loss of preload. Flattening of a surface allows the strain of a screw to relax, which in turn correlates with a loss in tension and thus preload. In bolted joints with particularly short grip lengths, the loss of preload due to embedment can be especially significant, causing complete loss of preload. Therefore, embedment can lead directly to loosening of a fastener joint and subsequent fatigue failure.

Preload is a civil engineering term with several meanings. In the general sense, it refers to the internal application of stress to certain mechanical systems.

In materials science, fatigue is the weakening of a material caused by repeatedly applied loads. It is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values that cause such damage may be much less than the strength of the material typically quoted as the ultimate tensile stress limit, or the yield stress limit.

In bolted joints, most of the embedment occurs during torquing. Only embedment that occurs after installation can cause a loss of preload, and values of up to 0.0005 inches can be seen at each surface mate, as reported by SAE.[ citation needed ]

Prevention/Solutions

Embedment can be prevented by designing mating surfaces of a joint to have high surface hardness and very smooth surface finish. Exceptionally hard and smooth surfaces will have less susceptibility to the mechanism that causes embedment.

Hardness is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. Some materials are harder than others. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, there are different measurements of hardness: scratch hardness, indentation hardness, and rebound hardness.

Surface roughness component of surface texture

Surface roughness often shortened to roughness, is a component of surface texture. It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth. In surface metrology, roughness is typically considered to be the high-frequency, short-wavelength component of a measured surface. However, in practice it is often necessary to know both the amplitude and frequency to ensure that a surface is fit for a purpose.

In most cases, some degree of embedment is inevitable. That said, short grip lengths should be avoided. For two bolted joints of identical design and installation, except the second having a longer grip length, the first joint will be more likely to loosen and fail. Since both joints have the same loading, the surfaces will experience the same amount of embedment. However, the relaxation in strain is less significant to the longer grip length and the loss in preload will be minimized. For this reason, bolted joints should always be designed with careful consideration for the grip length.

If a short grip length can not be avoided, the use of conical spring washers (Belleville washers or disc springs) can also reduce the loss of bolt pre-load due to embedment.

Belleville washer type of spring

A Belleville washer, also known as a coned-disc spring, conical spring washer, disc spring, Belleville spring or cupped spring washer, is a conical shell which can be loaded along its axis either statically or dynamically. A Belleville washer is a type of spring shaped like a washer. It is the frusto-conical shape that gives the washer its characteristic spring.

See also

Related Research Articles

Gasket type of mechanical seal

A gasket is a mechanical seal which fills the space between two or more mating surfaces, generally to prevent leakage from or into the joined objects while under compression.

Washer (hardware) thin plate with a hole, normally used to distribute the load of a threaded fastener

A washer is a thin plate with a hole that is normally used to distribute the load of a threaded fastener, such as a bolt or nut. Other uses are as a spacer, spring, wear pad, preload indicating device, locking device, and to reduce vibration. Washers often have an outer diameter (OD) about twice their inner diameter (ID), but this can vary quite widely.

Clevis fastener

A clevis fastener is a three-piece fastener system consisting of a clevis, clevis pin, and tang. The clevis is a U-shaped piece that has holes at the end of the prongs to accept the clevis pin. The clevis pin is similar to a bolt, but is only partially threaded or unthreaded with a cross-hole for a split pin. The tang is a piece that fits in the space within the clevis and is held in place by the clevis pin. The combination of a simple clevis fitted with a pin is commonly called a shackle, although a clevis and pin is only one of the many forms a shackle may take.

Socket wrench

A socket wrench is a type of wrench or spanner that has a socket attached at one end, usually used to turn a fastener.

Safety wire wire to secure bolted joint

Safety wire or locking-wire is a type of positive locking device that prevents fasteners from loosening or falling out due to vibration and other forces. The presence of safety wiring may also serve to indicate that the fasteners have been properly tightened.

Lug nut Fastener, specifically a nut, used to secure a wheel on a vehicle

A lug nut or wheel nut is a fastener, specifically a nut, used to secure a wheel on a vehicle. Typically, lug nuts are found on automobiles, trucks (lorries), and other large vehicles using rubber tires.

Locknut threaded fastener

A locknut, also known as a lock nut, locking nut, prevailing torque nut, stiff nut or elastic stop nut, is a nut that resists loosening under vibrations and torque. Elastic stop nuts and prevailing torque nuts are of the particular type where some portion of the nut deforms elastically to provide a locking action. The first type used fiber instead of nylon and was invented in 1931.

Anchor bolt

Anchor bolts are used to connect structural and non-structural elements to the concrete. The connection is made by an assembling of different components such as: anchor bolts, steel plates, stiffeners. Anchor bolts transfer different types of load: tension forces and shear forces. A connection between structural elements can be represented by steel column attached to reinforced concrete foundation. Whereas, a common case of non-structural element attached to a structural one is represented by the connection between a facade system and a reinforced concrete wall.

Brinelling is the permanent indentation of a hard surface. It is named after the Brinell scale of hardness, in which a small ball is pushed against a hard surface at a preset level of force, and the depth and diameter of the mark indicates the Brinell hardness of the surface. Brinelling is a process of wear in which similar marks are pressed into the surface of a moving part, such as bearings or hydraulic pistons. The brinelling is usually undesirable, as the parts often mate with other parts in very close proximity. The very small indentations can quickly lead to improper operation, like chattering or excess vibration, which in turn can accelerate other forms of wear, such as spalling and galling.

Multi-jackbolt tensioners (MJT) provide an alternative to traditional bolted joints rather than needing to tighten one large bolt, MJTs use several smaller jackbolts to drastically reduce the torque required to attain a certain preload. MJTs range in thread sizes from 3/4” to 32” and can achieve up to 20 million pounds of force and greater. MJTs only require hand-held tools, such as torque wrenches or air/electric impacts, for loading and unloading bolted joints.

Nut (hardware) type of fastener with a threaded hole

A nut is a type of fastener with a threaded hole. Nuts are almost always used in conjunction with a mating bolt to fasten multiple parts together. The two partners are kept together by a combination of their threads' friction, a slight stretching of the bolt, and compression of the parts to be held together.

Thread-locking fluid adhesive applied to screw threads

Thread-locking fluid or threadlocker is a thin, single-component adhesive, applied to the threads of fasteners such as screws and bolts to prevent loosening, leakage, and corrosion.

Bolt (fastener) cylindrical fastener with an external thread intended to be used together with a nut

A bolt is a form of threaded fastener with an external male thread. Bolts are closely related to screws.

Direct tension indicator

Direct tension indicators, or DTIs, are single use mechanical load cells used to indicate when the required tension has been achieved in structural fastener assemblies.

A torque to yield fastener (TTY) or stretch bolt is mounting hardware in the form of a fastener which is torqued beyond the state of elasticity and therefore undergoes plastic deformation, causing it to become permanently elongated.

A Junker test is a mechanical test to determine the point at which a bolted joint loses its preload when subjected to shear loading caused by transverse vibration.

References