Emmert's law states that objects that generate retinal images of the same size will look different in physical size (linear size) if they appear to be located at different distances. Specifically, the perceived linear size of an object increases as its perceived distance from the observer increases. This makes intuitive sense: an object of constant size will project progressively smaller retinal images as its distance from the observer increases. Similarly, if the retinal images of two different objects at different distances are the same, the physical size of the object that is farther away must be larger than the one that is closer.
Emil Emmert (1844–1911) first described the law in 1881. [1] He noted that an afterimage appeared to increase in size when projected to a greater distance. Some authors thus take Emmert's law to refer strictly to the increase in the apparent size of an after-image when the distance between observer and projection plane is increased, as it did in its original form. [2] Other authors take Emmert's law to apply to any comparative estimation of physical size in which the size of the retinal image, however it may be produced, is equated. [3]
It is unclear whether Emmert intended the increase in distance to refer to an increase in physical distance or an increase in perceived distance, but most authors assume the latter. [4] Under that interpretation, Emmert's law is a special instance of size constancy and of the size–distance invariance hypothesis, which states that the ratio of perceived linear size to perceived distance is a simple function of the visual angle. [5]
The effect of viewing distance on perceived size can be observed by first obtaining an afterimage, which can be achieved by viewing a bright light for a short time, or staring at a figure for a longer time. It appears to grow in size when projected to a further distance. However, the increase in perceived size is much less than would be predicted by geometry, which casts some doubt on the geometrical interpretation given above. [6] Further, the change in perceived size is affected by the illusory distances in the Ames room; this also suggests that, when distance cues are reduced, there is no simple geometrical relationship between perceived afterimage size and actual viewing distance. [5]
Emmert's law has been used to investigate the moon illusion (the apparent enlargement of the moon or sun near the horizon compared with higher in the sky). [7] [8] A neuroimaging study that examined brain activation when participants viewed afterimages on surfaces placed at different distances found evidence supporting Emmert's Law and thus size constancy played out in primary visual cortex (V1); i.e. the larger the perceived size of the afterimage, the larger the retinotopic activation in V1. [9]
Some have criticized the use of Emmert's law as an explanation for phenomena such as the moon illusion, because Emmert's law explains one perception in terms of another, rather than explaining any of the complex internal processes or mechanisms presumably involved in perception. [10] That is, Emmert's law is useful, but it does not explain why you perceive an object as being larger if you perceive it as being farther away.
Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.
The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 (V1), Brodmann area 17, or the striate cortex. The extrastriate areas consist of visual areas 2, 3, 4, and 5.
An illusion is a distortion of the senses, which can reveal how the mind normally organizes and interprets sensory stimulation. Although illusions distort the human perception of reality, they are generally shared by most people.
In visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immerged in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Physical illusions are caused by the physical environment, e.g. by the optical properties of water. Physiological illusions arise in the eye or the visual pathway, e.g. from the effects of excessive stimulation of a specific receptor type. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.
The Müller-Lyer illusion is an optical illusion consisting of three stylized arrows. When viewers are asked to place a mark on the figure at the midpoint, they tend to place it more towards the "tail" end. The illusion was devised by Franz Carl Müller-Lyer (1857–1916), a German sociologist, in 1889.
Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.
Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity.
An afterimage is an image that continues to appear in the eyes after a period of exposure to the original image. An afterimage may be a normal phenomenon or may be pathological (palinopsia). Illusory palinopsia may be a pathological exaggeration of physiological afterimages. Afterimages occur because photochemical activity in the retina continues even when the eyes are no longer experiencing the original stimulus.
The Ternus illusion, also commonly referred to as the Ternus Effect, is an illusion related to human visual perception involving apparent motion. In a simplified explanation of one form of the illusion, two discs, are shown side by side as the first frame in a sequence of three frames. Next a blank frame is presented for a very short, variable duration. In the final frame, two similar discs are then shown in a shifted position. Depending on various factors including the time intervals between frames as well as spacing and layout, observers perceive either element motion, in which L appears to move to R while C remains stationary or they report experiencing group motion, in which L and C appear to move together to C and R. Both element motion and group motion can be observed in animated examples to the right in Figures 1 and 2.
The Moon illusion is an optical illusion which causes the Moon to appear larger near the horizon than it does higher up in the sky. It has been known since ancient times and recorded by various cultures. The explanation of this illusion is still debated.
The Ponzo illusion is a geometrical-optical illusion that takes its name from the Italian psychologist Mario Ponzo (1882–1960). Ponzo never claimed to have discovered it, and it is indeed present in earlier work. Much confusion is present about this including many references to a paper that Ponzo published in 1911 on the Aristotle illusion. This is a tactile effect and it has nothing at all to do with what we now call the Ponzo illusion. The illusion can be demonstrated by drawing two identical lines across a pair of converging lines, similar to railway tracks, but the effect works also at different orientations.
Visual angle is the angle a viewed object subtends at the eye, usually stated in degrees of arc. It also is called the object's angular size.
Subjective constancy or perceptual constancy is the perception of an object or quality as constant even though our sensation of the object changes. While the physical characteristics of an object may not change, in an attempt to deal with the external world, the human perceptual system has mechanisms that adjust to the stimulus.
In vision, filling-in phenomena are those responsible for the completion of missing information across the physiological blind spot, and across natural and artificial scotomata. There is also evidence for similar mechanisms of completion in normal visual analysis. Classical demonstrations of perceptual filling-in involve filling in at the blind spot in monocular vision, and images stabilized on the retina either by means of special lenses, or under certain conditions of steady fixation. For example, naturally in monocular vision at the physiological blind spot, the percept is not a hole in the visual field, but the content is “filled-in” based on information from the surrounding visual field. When a textured stimulus is presented centered on but extending beyond the region of the blind spot, a continuous texture is perceived. This partially inferred percept is paradoxically considered more reliable than a percept based on external input..
The Chubb illusion is an optical illusion or error in visual perception in which the apparent contrast of an object varies substantially to most viewers depending on its relative contrast to the field on which it is displayed. These visual illusions are of particular interest to researchers because they may provide valuable insights in regard to the workings of human visual systems.
Convergence micropsia is a type of micropsia characterized by the reduction in apparent size of objects viewed when the eyes are more converged than they need to be for the distance of the object from the eyes.
Stuart M. Anstis is a professor emeritus of psychology at the University of California, San Diego, in the United States.
In human visual perception, the visual angle, denoted θ, subtended by a viewed object sometimes looks larger or smaller than its actual value. One approach to this phenomenon posits a subjective correlate to the visual angle: the perceived visual angle or perceived angular size. An optical illusion where the physical and subjective angles differ is then called a visual angle illusion or angular size illusion.
Geometrical–optical are visual illusions, also optical illusions, in which the geometrical properties of what is seen differ from those of the corresponding objects in the visual field.
Hans Wallach was a German-American experimental psychologist whose research focused on perception and learning. Although he was trained in the Gestalt psychology tradition, much of his later work explored the adaptability of perceptual systems based on the perceiver's experience, whereas most Gestalt theorists emphasized inherent qualities of stimuli and downplayed the role of experience. Wallach's studies of achromatic surface color laid the groundwork for subsequent theories of lightness constancy, and his work on sound localization elucidated the perceptual processing that underlies stereophonic sound. He was a member of the National Academy of Sciences, a Guggenheim Fellow, and recipient of the Howard Crosby Warren Medal of the Society of Experimental Psychologists.