Emmons problem

Last updated

In combustion, Emmons problem describes the flame structure which develops inside the boundary layer, created by a flowing oxidizer stream on flat fuel (solid or liquid) surfaces. The problem was first studied by Howard Wilson Emmons in 1956. [1] [2] [3] The flame is of diffusion flame type because it separates fuel and oxygen by a flame sheet. The corresponding problem in a quiescent oxidizer environment is known as Clarke–Riley diffusion flame.

Contents

Burning rate [4]

Consider a semi-infinite fuel surface with leading edge located at and let the free stream oxidizer velocity be . Through the solution of Blasius equation ( is the self-similar Howarth–Dorodnitsyn coordinate), the mass flux ( is density and is vertical velocity) in the vertical direction can be obtained

where

In deriving this, it is assumed that the density and the viscosity , where is the temperature. The subscript describes the values far away from the fuel surface. The main interest in combustion process is the fuel burning rate, which is obtained by evaluating at , as given below,

See also

Related Research Articles

In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are formally similar to real-valued measures, except that their values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

<span class="mw-page-title-main">Parameterized post-Newtonian formalism</span>

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation is

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">BPST instanton</span> Type of Yang–Mills instanton

In theoretical physics, the BPST instanton is the instanton with winding number 1 found by Alexander Belavin, Alexander Polyakov, Albert Schwarz and Yu. S. Tyupkin. It is a classical solution to the equations of motion of SU(2) Yang–Mills theory in Euclidean space-time, meaning it describes a transition between two different topological vacua of the theory. It was originally hoped to open the path to solving the problem of confinement, especially since Polyakov had proven in 1987 that instantons are the cause of confinement in three-dimensional compact-QED. This hope was not realized, however.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition to Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary Layer

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.

Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc.

In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, to the problem derived by Schlichting in 1933 and the corresponding problem in axisymmetric coordinates is called as Schlichting jet. The solution is valid only for distances far away from the jet origin.

In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.

In combustion, a Burke–Schumann flame is a type of diffusion flame, established at the mouth of the two concentric ducts, by issuing fuel and oxidizer from the two region respectively. It is named after S.P. Burke and T.E.W. Schumann, who were able to predict the flame height and flame shape using their simple analysis of infinitely fast chemistry in 1928 at the First symposium on combustion.

In astrophysics, Chandrasekhar's white dwarf equation is an initial value ordinary differential equation introduced by the Indian American astrophysicist Subrahmanyan Chandrasekhar, in his study of the gravitational potential of completely degenerate white dwarf stars. The equation reads as

In fluid dynamics, Howarth–Dorodnitsyn transformation is a density-weighted coordinate transformation, which reduces variable-density flow conservation equations to simpler form. The transformation was first used by Anatoly Dorodnitsyn in 1942 and later by Leslie Howarth in 1948. The transformation of coordinate to is given by

Schlichting jet is a steady, laminar, round jet, emerging into a stationary fluid of the same kind with very high Reynolds number. The problem was formulated and solved by Hermann Schlichting in 1933, who also formulated the corresponding planar Bickley jet problem in the same paper. The Landau-Squire jet from a point source is an exact solution of Navier-Stokes equations, which is valid for all Reynolds number, reduces to Schlichting jet solution at high Reynolds number, for distances far away from the jet origin.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.

References

  1. Emmons, H. W. (1956). The film combustion of liquid fuel. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 36(1‐2), 60-71.
  2. Clarke, J. F. (1969). Emmons' problem according to the Oseen approximation. The Physics of Fluids, 12(1), 241-243.
  3. Baum, H. R., & Atreya, A. (2015). The Elliptic Emmons Problem. In ICHMT DIGITAL LIBRARY ONLINE. Begel House Inc.
  4. Williams, F. A. (2018). Combustion theory. CRC Press.