Endodontic files and reamers

Last updated

Endodontic files and reamers are surgical instruments used by dentists when performing root canal treatment. These tools are used to clean and shape the root canal, with the concept being to perform complete chemomechanical debridement of the root canal to the length of the apical foramen. Preparing the canal in this way facilitates the chemical disinfection to a satisfactory length but also provides a shape conducive to obturation (filling of the canal).

Contents

Hand files

Miscellaneous endodontic instruments. From left: Lentulo spiral, reamer, K-file and H-file. Misc endo instruments 25.jpg
Miscellaneous endodontic instruments. From left: Lentulo spiral, reamer, K-file and H-file.

Hand files can provide tactile sensation when cleaning or shaping root canals. This allows the dentist to feel changes in resistance or angulation, which can help determine curvature, calcification and/or changes in anatomy, in which two dimensional radiographs may not always identify. This information can help determine strategies or avoid complications before moving on to rotary instruments.

K-type files

The cutting edge of K type files is made up of twisted squares of stainless steel alloy. The K-flex file differs for the fact it has a rhomboid shaped cross-section and has an increased flexibility compared to traditional K-files. [1]

C-type files

C-files are stiffer than K-files, and are recommended for calcified canals and ones that are curved and narrow. [2]

Nickel-titanium files

Nickel-titanium is a superelastic alloy which allows it to undergo greater stresses compared to stainless steel therefore files have a reduced risk of file fracture. It also has the characteristic of 'shape memory' which allows it to return to its initial shape through heating after strain. This reduces the risk of deformation within the root canal as forces of compression and tension are absent.

The superelasticity allows an increase in taper (between 4–8%) compared to stainless steel. This allows an adequate taper of the root canal which takes less time to prepare than with stainless steel and less files needed. The super elasticity also means the risk of zipping and apical transportation is reduced.

Many Nickel-titanium files are available. The files can be used within rotary systems or manually for a higher level of control.

Techniques for use

Watch winding and circumferential filing technique

The use of the file in a forwards and backwards motion, as if watch winding, with slight apical pressure. This allows the file to effectively debride the canal dentine by moving slowly down the canal.

For K-type files, once the file has reached the desired working length, a push and pulling action is used around the circumference of the canal, while only maintaining contact with the canal wall on the outstroke to minimise a debris blockage apically.

The balanced force technique

This is the most widely used technique and especially good for working with curved canals. [3]

Files used for this technique need to be non-cutting edge and flexible. The file is rotated 60 degrees clockwise in the canal when a slight resistance is felt. The file is then rotated 360 degrees anticlockwise to pick up the dentine in the flutes that was made during the first rotation. This should be done no more than three times before the file is removed and cleaned and the canal system irrigated before reinsertion. [4]

Hedstrom files

The cross-section of a Hedstrom file (H-file) is made up of a continuous sequence of cones. They are very sharp with a cutting tip. Their use in a push-pull fashion results in a high level of debridement on removal from the root canal. They should not be rotated more than 30 degrees as they are narrow and vulnerable to fracture. They are also used for removal of root canal filling materials e.g. gutta percha during secondary root canal treatment.

Barbed broach

This file is used to remove pulp tissue (extirpation) during root canal treatment. There are sharp barbs on the file to engage the pulp tissue and remove this efficiently. These files are not used to shape the RCS.

Standardisation of instruments (ISO)

The handles of the ISO instruments are colour coded and are available in three different lengths of 21mm, 25mm and 31mm where the extra length is non-cutting shaft. This extra length is particularly useful for posterior teeth where access and visibility is impaired.

ISO files are made of stainless steel. This can be useful in smaller files (<20) but larger files have increased rigidity which can result in procedural errors. At smaller sizes the files can be pre-curved which is a major advantage for the debridement of roots with sharp curvatures. Their rigidity also has an advantage in calcified root canals in the initial stages of debridement. 

The ISO stainless steel files on the market today include K-Flex, K-Flexofile and Hedström where the tip size and taper is standardised.

ISO normed hand files have a standardised taper of 2% that equates to 0.02mm increase in diameter per mm of file. This standardised taper allows you to calculate the diameter of any given stainless steel file at any given point. Where the 2% taper means that there is an increase in diameter by 0.02mm every 1mm of file (moved in a coronal direction). The most apical point of any file is deemed D0, so moving coronal on the file by 1mm brings you to D1 and so on, up to D16 as there is a 16mm cutting surface on all files.

For example, an ISO K file size 25 has a D0 value of 0.25mm diameter at its tip. If you were to move 6mm coronally on this file from D0, the cross sectional diameter would be:

0.25mm + (6mmx0.02mm)=0.37mm

Protaper series

The range of files are available as hand and rotary. The first files in the series are termed SX, S1 and S2. These are used to improve access to the canals by first creating a coronal flare in the crown-down technique.

SX files are typically used first as they are shorter in overall length 19mm and so are good in cases of restrictive space. The canal is prepped in the coronal 2/3 with these files as part of the crown-down technique.

After this, files named F1, F2, F3 etc. are used with increasing D0 values. These are used to shape the canal.

Between each of these finishing files, you should recapitulate the canal using the corresponding (with the same D0 value) K file. This prevents procedural errors, confirms the canal remains patent and prevents dentine swarf build up in within the canal. Complete copious irrigation in between each file.

Rotary files

Revo-S file system SC1, SC2 and SU shaping files by Micromega Rotary files.jpg
Revo-S file system SC1, SC2 and SU shaping files by Micromega

The introduction of Nickel Titanium in dentistry has allowed the use of rotary systems to be used to prepare root canals safely and predictably. Rotary instrumentation is known to have an improved cutting efficiency when compared with hand filing techniques. It is advisable to use a dedicated electric endodontic motor where torque and speed can be easily controlled dependent on the system chosen. Despite the advantages of rotary systems, it is always recommended to create a glide path with hand files in each canal prior to rotary instrumentation. There are numerous rotary files available on the market, including a variety of systems from different manufacturers.

Reciprocating systems

Reciprocating systems involve rotation of the file in both anti-clockwise and clockwise directions. This is similar to the ‘balanced force’ mechanism used with hand files. When the file is used in an anti-clockwise direction, it engages dentine and is quickly followed by a clockwise turn before re-engaging the root canal wall and shearing the dentine. Benefits of a reciprocating system include:

Self-adjusting files

Self-adjusting file systems have been developed to overcome complications that arise due to complex anatomy and canal configurations. These files are used in a rotary hand piece and consist of a flexible, thin NiTi lattice with a hollow centre that adapt three-dimensionally to the shape of a given root canal, including its cross section. [5] The files are operated with vibratory in-and-out motion, with continuous irrigation of disinfectant delivered by a peristaltic pump through the hollow file. [6] A uniform layer of dentin is removed from the whole circumference of the root canal, thus achieving the main goals of root canal treatment while preserving the remaining root dentin. [7] The 3D scrubbing effect of the file, combined with the fresh irrigant, result in clean canals, which in turn facilitate better obturation. [5] More effective disinfection of flat-oval root canals is another goal that is simultaneously attained. [8]

D-files

D files are a selection of bespoke rotary files that are commonly used in re-treatment cases for the efficient removal of gutta percha. They are used in sequence to remove the coronal (D1), mid (D2) and apical (D3) ⅓ root filling material more efficiently before the final shaping with conventional instruments. D1 is 16mm in length with a cutting end tip to engage the filling material in the canal. D2 and D3 are 18mm and 22mm in length respectively, both are non end cutting and aim to not remove remaining dentine from canal walls in the process. [1]

Single use legislation (in the UK)

In 2007, new legislation documenting the possible risk of prion disease transmission via endodontic files/reamers during root canal treatment was published via the BDJ. [9] The conclusions made were such that there was no significant risk associated but the implementation of single use instruments was introduced to take all possible precautions. This was primarily due to the shape and relative surface area of the files making thorough disinfection and sterilisation very difficult.

Mechanisms of failure

Instrumentation of the root canal systems (RCS) can lead to procedural errors including ledging, zipping, canal perforation and apex transportation all of which can be somewhat successfully resolved through further manual corrective techniques. However, file separation whereby the instrument breaks in the canal, is the most concerning and problematic procedural error, with fractured endodontic instruments being the most commonly found object in the RCS. The incidence of file fracture has been found to range between 0.25-6% of cases. File separation will create an obstruction within the canal preventing adequate cleaning and shaping of the canal at and beyond the obstruction as well as under-filling of the RCS. This may ultimately lead to endodontic failure depending on the location at which the file fractured in the RCS.

The cause fracture of instruments can be divided into different factors, operator/ technique, anatomy and instrument.

Cyclic fatigue

i.e. the lack of flexibility of the instruments when negotiating particularly curved canals. The more curved the canal, the greater the cyclical fatigue placed on the instrument, as it is undergoing repetitive tensile and compressive stresses upon rotation no matter the flexibility of the alloy. Pre-curving of the stainless steel files for canal negotiation will work-harden them, rendering them more brittle and therefore are more likely to fracture. Such files should also not be twisted in an anticlockwise manner, as this may also lead to brittle fracture especially when there is increased torque. NiTi files have been designed with increased flexibility for canal negotiation, however this does not entirely negate the event of file separation. NiTi files undergo cyclic fatigue due to a change in the crystalline structure of the file whilst under stress resulting in the alloy becoming more brittle.

Flexural fatigue

i.e. overuse of the file. It is safe to assume that the more a file is used, the greater the risk of separation. However, one cannot dictate a specific number of times for use nor predict when a file is going to fracture. The introduction of single use files has reduced this risk somewhat, yet it is vital to regularly inspect the files upon removal from canals for damage. The problem comes when files separate without there being any visible sign of damage.

Torsional fatigue

Torque relates to the required force needed in order for an instrument to carry on rotating upon encountering frictional forces. A file may bind the wall of the root canal apically due to a larger diameter of the file compared with the canal causing friction. If rotational forces are still in motion, torque may reach a critical level and the file will fracture. The torque generated from smaller canals will be greater than in larger canals, as files will bind to the canal walls more readily through friction. The greater the diameter of the instrument, the more force it can withstand despite needing increased torque however, the less resistant it becomes to cyclic fatigue. Torsional fatigue can be somewhat limited through creation of a glide path and adopting the Crown-Down technique in a bid to reduce frictional forces.

Intrinsic file defects

Beware of surface defects arising from the manufacture of the files, which can propagate under fatigue by creating stress concentrations and ultimately lead to fracture. This holds especially true for NiTi files, which are manufactured via milling of alloy blanks using CAD-CAM, as opposed to twisting of the blanks like with stainless steel. Deeper cutting flutes will also create stress concentrations.

File failure could be attributed to the skill and chosen technique used for instrumentation by the operator. It is more often the way in which an instrument is used, as opposed to the number of times it has been used that causes fracture e.g. due to overloading. Aggressively inserting instruments into canals should be avoided, as this will increase the friction created between the canal walls and the file. Evidence shows that hand instrumentation will result in a lower risk of file fracture compared with rotary and this may be attributed to increased rotational speed, which enhances the effects of cyclic fatigue. Therefore, when using electric motors with rotary instruments, a low speed and low torque concept is recommended.

Minimising the risk of separation

  1. Well-angled radiographs to determine canal curvature (this will however be a 2D representation of a 3D system)
  2. Access cavity design (straight line access) and glide path
  3. Crown Down instrumentation sequence to minimise friction
  4. Wet canals for lubrication but beware of risk of corrosion to stainless steel instruments due to irrigants used in canals e.g. with EDTA or Sodium Hypochlorite
  5. Regular file inspection before and during instrumentation
  6. Set electric motors at low torque (follow manufacturer instruction for recommended speed and torque)

Related Research Articles

<span class="mw-page-title-main">Root canal</span> Hollow part of the root of a tooth

A root canal is the naturally occurring anatomic space within the root of a tooth. It consists of the pulp chamber, the main canal(s), and more intricate anatomical branches that may connect the root canals to each other or to the surface of the root.

<span class="mw-page-title-main">Endodontics</span> Field of dentistry

Endodontics is the dental specialty concerned with the study and treatment of the dental pulp.

<span class="mw-page-title-main">Pulp (tooth)</span> Part in the center of a tooth made up of living connective tissue and cells called odontoblasts

The pulp is the connective tissue, nerves, blood vessels, and odontoblasts that comprise the innermost layer of a tooth. The pulp's activity and signalling processes regulate its behaviour.

<span class="mw-page-title-main">Crown (dental restoration)</span> Dental prosthetic that recreates the visible portion of a tooth

In dentistry, a crown or a dental cap is a type of dental restoration that completely caps or encircles a tooth or dental implant. A crown may be needed when a large dental cavity threatens the health of a tooth. Some dentist will also finish root canal treatment by covering the exposed tooth with a crown. A crown is typically bonded to the tooth by dental cement. They can be made from various materials, which are usually fabricated using indirect methods. Crowns are used to improve the strength or appearance of teeth and to halt deterioration. While beneficial to dental health, the procedure and materials can be costly.

<span class="mw-page-title-main">Dental drill</span> Dental instrument

A dental drill or dental handpiece is a hand-held, mechanical instrument used to perform a variety of common dental procedures, including removing decay, polishing fillings, performing cosmetic dentistry, and altering prostheses. The handpiece itself consists of internal mechanical components which initiate a rotational force and provide power to the cutting instrument, usually a dental burr. The type of apparatus used clinically will vary depending on the required function dictated by the dental procedure. It is common for a light source and cooling water-spray system to also be incorporated into certain handpieces; this improves visibility, accuracy and overall success of the procedure. The burrs are usually made of tungsten carbide or diamond.

<span class="mw-page-title-main">Dental instrument</span> Tools of the dental profession

Dental instruments are tools that dental professionals use to provide dental treatment. They include tools to examine, manipulate, treat, restore, and remove teeth and surrounding oral structures.

Dens invaginatus (DI), also known as tooth within a tooth, is a rare dental malformation where there is an infolding of enamel into dentine. The prevalence of condition is 0.3 - 10%, affecting more males than females. The condition is presented in two forms, coronal and radicular, with the coronal form being more common.

<span class="mw-page-title-main">Dentin dysplasia</span> Medical condition

Dentin dysplasia (DD) is a rare genetic developmental disorder affecting dentine production of the teeth, commonly exhibiting an autosomal dominant inheritance that causes malformation of the root. It affects both primary and permanent dentitions in approximately 1 in every 100,000 patients. It is characterized by the presence of normal enamel but atypical dentin with abnormal pulpal morphology. Witkop in 1972 classified DD into two types which are Type I (DD-1) is the radicular type, and type II (DD-2) is the coronal type. DD-1 has been further divided into 4 different subtypes (DD-1a,1b,1c,1d) based on the radiographic features.

A post and core crown is a type of dental restoration required where there is an inadequate amount of sound tooth tissue remaining to retain a conventional crown. A post is cemented into a prepared root canal, which retains a core restoration, which retains the final crown.

<span class="mw-page-title-main">Root canal treatment</span> Dental treatment

Root canal treatment is a treatment sequence for the infected pulp of a tooth which is intended to result in the elimination of infection and the protection of the decontaminated tooth from future microbial invasion. Root canals, and their associated pulp chamber, are the physical hollows within a tooth that are naturally inhabited by nerve tissue, blood vessels and other cellular entities. Together, these items constitute the dental pulp.

Apical periodontitis is typically the body's defense response to the threat of microbial invasion from the root canal. Primary among the members of the host defense mechanism is the polymorphonuclear leukocyte, otherwise known as the neutrophil. The task of the neutrophil is to locate and destroy microbes that intrude into the body – anywhere in the body – and they represent the hallmark of acute inflammation.

<span class="mw-page-title-main">Debridement (dental)</span> Removal of plaque and calculus from teeth

In dentistry, debridement refers to the removal by dental cleaning of accumulations of plaque and calculus (tartar) in order to maintain dental health. Debridement may be performed using ultrasonic instruments, which fracture the calculus, thereby facilitating its removal, as well as hand tools, including periodontal scaler and curettes, or through the use of chemicals such as hydrogen peroxide.

Pulp necrosis is a clinical diagnostic category indicating the death of cells and tissues in the pulp chamber of a tooth with or without bacterial invasion. It is often the result of many cases of dental trauma, caries and irreversible pulpitis.

A phoenix abscess is an acute exacerbation of a chronic periapical lesion. It is a dental abscess that can occur immediately following root canal treatment. Another cause is due to untreated necrotic pulp. It is also the result of inadequate debridement during the endodontic procedure. Risk of occurrence of a phoenix abscess is minimised by correct identification and instrumentation of the entire root canal, ensuring no missed anatomy.

In dentistry, the smear layer is a layer found on root canal walls after root canal instrumentation. It consists of microcrystalline and organic particle debris. It was first described in 1975 and research has been performed since then to evaluate its importance in bacteria penetration into the dentinal tubules and its effects on endodontic treatment. More broadly, it is the organic layer found over all hard tooth surfaces.

<span class="mw-page-title-main">Pulp stone</span>

Pulp stones are nodular, calcified masses appearing in either or both the coronal and root portion of the pulp organ in teeth. Pulp stones are not painful unless they impinge on nerves.

<span class="mw-page-title-main">Regenerative endodontics</span> Dental specialty

Regenerative endodontic procedures is defined as biologically based procedures designed to replace damaged structures such as dentin, root structures, and cells of the pulp-dentin complex. This new treatment modality aims to promote normal function of the pulp. It has become an alternative to heal apical periodontitis. Regenerative endodontics is the extension of root canal therapy. Conventional root canal therapy cleans and fills the pulp chamber with biologically inert material after destruction of the pulp due to dental caries, congenital deformity or trauma. Regenerative endodontics instead seeks to replace live tissue in the pulp chamber. The ultimate goal of regenerative endodontic procedures is to regenerate the tissues and the normal function of the dentin-pulp complex.

A nickel titanium rotary file is an engine-driven tapered and pointed endodontic instrument made of nickel titanium alloy with cutting edges used to mechanically shape and prepare the root canals during endodontic therapy or to remove the root canal obturating material while performing retreatment. The first nickel titanium rotary file was introduced to the market in 1991. Superelasticity and shape memory are the properties that make nickel titanium rotary files very flexible. The high flexibility makes them superior to stainless steel files for the purpose of rotary root canal preparation. The use of nickel titanium rotary files in dentistry is a common practice.

Biofilling, also known as orthograde canal grafting technique or 4D sealing, is an endodontic root canal obturation technique with a Bioceramic material after root canal preparation and enlargement procedure.

Root fracture of the tooth is a dentine cementum fracture involving the pulp.

References

  1. 1 2 Patel, S. Barnes, J (2013). The principles of Endodontics. 2nd ed. Oxford: Oxford University Press. 69-72.
  2. Peter Mann DDS, FOCOI, FAGD https://www.perioimplantadvisory.com/articles/2015/10/step-by-step-procedure-to-simplified-and-efficient-root-canal-techniques.html
  3. "Endodontics: Part 7 Preparing the root canal". British Dental Journal. Retrieved 2017-11-21.
  4. "Endodontics: Part 7 Preparing the root canal". British Dental Journal. Retrieved 2017-11-21.
  5. 1 2 Metzger, Zvi; Teperovich, Ehud; Zary, Raviv; Cohen, Raphaela; Hof, Rafael (2010). "The Self-adjusting File (SAF). Part 1: Respecting the Root Canal Anatomy—A New Concept of Endodontic Files and Its Implementation". Journal of Endodontics. 36 (4): 679–90. doi:10.1016/j.joen.2009.12.036. PMID   20307744.
  6. Metzger, Zvi (2014). "The self-adjusting file (SAF) system: An evidence-based update". Journal of Conservative Dentistry. 17 (5): 401–419. doi: 10.4103/0972-0707.139820 . ISSN   0972-0707. PMC   4174698 . PMID   25298639.
  7. De-Deus, Gustavo; Souza, Erick Miranda; Barino, Bianca; Maia, Janaina; Zamolyi, Renata Quintella; Reis, Claudia; Kfir, Anda (2011). "The Self-Adjusting File Optimizes Debridement Quality in Oval-shaped Root Canals". Journal of Endodontics. 37 (5): 701–5. doi:10.1016/j.joen.2011.02.001. PMID   21496675.
  8. Siqueira Jr., José F.; Alves, Flávio R. F.; Almeida, Bernardo M.; Machado De Oliveira, Julio C.; Rôças, Isabela N. (2010). "Ability of Chemomechanical Preparation with Either Rotary Instruments or Self-adjusting File to Disinfect Oval-shaped Root Canals". Journal of Endodontics. 36 (11): 1860–5. doi: 10.1016/j.joen.2010.08.001 . PMID   20951301.
  9. "Government advises single use of endodontic instruments" (PDF). British Dental Journal. 202 (8): 442. 2007. doi: 10.1038/bdj.2007.364 .