Energetics

Last updated

Energetics (also called energy economics) is the study of energy under transformation. Because energy flows at all scales, from the quantum level to the biosphere and cosmos, energetics is a very broad discipline, encompassing for example thermodynamics, chemistry, biological energetics, biochemistry and ecological energetics. Where each branch of energetics begins and ends is a topic of constant debate. For example, Lehninger (1973, p. 21) contended that when the science of thermodynamics deals with energy exchanges of all types, it can be called energetics.

Contents

Aims

In general, energetics is concerned with defining relationships to describe the tendencies of energy flows and storages under transformation, defined here as phenomena which behave like historical invariants under repeated observations. When some critical number of people have observed such invariance, such a principle is usually then given the status of a 'fundamental law' of science. As in all scientific inquiry, whether a theorem or principle is considered a fundamental law appears to depend on how many people agree to the proposition. The ultimate aim of energetics therefore is the description of fundamental laws. Philosophers of science have held that the fundamental laws of thermodynamics can be treated as laws of energetics, (Reiser 1926, p. 432). By continuing to more accurately describe these laws, energetics aims to produce reliable predictions about energy flow and storage transformations at any scale.

History

Energetics has a controversial history. Some authors maintain that its origins may be found in the work of the ancient Greeks, but that the mathematical formalisation began with the work of Leibniz. Richard de Villamil (1928) said that Rankine formulated the science of energetics in his paper Outlines of the Science of Energetics published in the Proceedings of the Philosophical Society of Glasgow in 1855. W. Ostwald and E. Mach subsequently developed the study, and by the late 1800s energetics was understood to be incompatible with the atomic view of the atom forwarded by Boltzmann's gas theory. Proof of the atom settled the dispute but not without significant damage. In the 1920s Lotka attempted to build on Boltzmann's views through a mathematical synthesis of energetics with biological evolutionary theory. Lotka proposed that the selective principle of evolution was one which favoured the maximum useful energy flow transformation. This view subsequently influenced the further development of ecological energetics, especially the work of Howard T. Odum.

De Villamil attempted to clarify the scope of energetics with respect to other branches of physics by positing a system that divides mechanics into two branches; energetics (the science of energy), and "pure", "abstract" or "rigid" dynamics (the science of momentum). According to Villamil energetics can be mathematically characterised by scalar equations, and rigid dynamics by vector equations. In this division the dimensions for dynamics are space, time and mass, and for energetics, length, time and mass (Villamil 1928, p. 9). This division is made according to fundamental suppositions about the properties of bodies, e.g.:

  1. Are the particles comprising the system rigidly fixed together?
  2. Is there any machinery for stopping moving bodies?

In Villamil's classification system, dynamics says yes to 1 and no to 2, whereas energetics says no to 1 and yes to 2. Therefore, in Villamil's system, dynamics assumes that particles are rigidly fixed together and cannot vibrate, and consequently must all be at zero kelvin. The conservation of momentum is a consequence of this view, however it is considered valid only in logic and not to be a true representation of the facts (Villamil, p. 96). In contrast energetics does not assume that particles are rigidly fixed together, and thus are free to vibrate, and consequently can be at non-zero temperatures.

Theories

Ecological analysis of CO2 in an ecosystem Genomics GTL Program Payoffs.jpg
Ecological analysis of CO2 in an ecosystem

As a general statement of energy flows under transformation, the principles of energetics include the first four laws of thermodynamics which seek a rigorous description. However the precise place of the laws of thermodynamics within the principles of energetics is a topic currently under debate. If the ecologist Howard T. Odum was right, the principles of energetics take into consideration a hierarchical ordering of energy forms, which aims to account for the concept of energy quality, and the evolution of the universe. Albert Lehninger (1973, p. 2) called these hierarchical orderings the

... successive stages in the flow of energy through the biological macrocosm

Odum proposed 3 further energetic principles and one corollary that take energy hierarchy into account. The first four principles of energetics are related to the same numbered laws of thermodynamics, and are expanded upon in that article.

See also

Related Research Articles

Entropy physical property of the state of a system, measure of disorder.

In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is closely related to the number Ω of microscopic configurations that are consistent with the macroscopic quantities that characterize the system. Entropy expresses the number Ω of different configurations that a system defined by macroscopic variables could assume. Under the assumption that each microstate is equally probable, the entropy is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant kB. Formally,

The following outline is provided as an overview of and topical guide to physics:

Statistical mechanics is one of the pillars of modern physics. It is necessary for the fundamental study of any physical system that has many degrees of freedom. The approach is based on statistical methods, probability theory and the microscopic physical laws.

Thermodynamics branch of physics concerned with heat, work, temperature, and thermal or internal energy

Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in fields as complex as meteorology.

Scientific law statement based on repeated experimental observations that describes some aspects of the universe

Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term law has diverse usage in many cases across all fields of natural science. Laws are developed from data and can be further developed through mathematics; in all cases they are directly or indirectly based on empirical evidence. It is generally understood that they implicitly reflect, though they do not explicitly assert, causal relationships fundamental to reality, and are discovered rather than invented.

In classical statistical mechanics, the H-theorem, introduced by Ludwig Boltzmann in 1872, describes the tendency to decrease in the quantity H in a nearly-ideal gas of molecules. As this quantity H was meant to represent the entropy of thermodynamics, the H-theorem was an early demonstration of the power of statistical mechanics as it claimed to derive the second law of thermodynamics—a statement about fundamentally irreversible processes—from reversible microscopic mechanics. It is thought to prove the second law of thermodynamics, albeit under the assumption of low-entropy initial conditions.

Alfred J. Lotka American mathematician

Alfred James Lotka was a US mathematician, physical chemist, and statistician, famous for his work in population dynamics and energetics. An American biophysicist, Lotka is best known for his proposal of the predator–prey model, developed simultaneously but independently of Vito Volterra. The Lotka–Volterra model is still the basis of many models used in the analysis of population dynamics in ecology.

Ludwig Boltzmann Austrian physicist

Ludwig Eduard Boltzmann was an Austrian physicist and philosopher. His greatest achievement was in the development of statistical mechanics, which explains and predicts how the properties of atoms determine the physical properties of matter. Boltzmann coined the word ergodic while he was working on a problem in statistical mechanics.

Irreversible process process that is not reversible

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics.

Howard Thomas Odum, usually cited as H. T. Odum, was an American ecologist. He is known for his pioneering work on ecosystem ecology, and for his provocative proposals for additional laws of thermodynamics, informed by his work on general systems theory.

Emergy is the amount of energy that was consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources Each form is generated by transformation processes in nature and each has a different ability to support work in natural and in human systems. The recognition of these quality differences is a key concept.

Biological thermodynamics is the quantitative study of the energy transductions that occur in or between living organisms, structures, and cells and of the nature and function of the chemical processes underlying these transductions. Biological thermodynamics may address the question of whether the benefit associated with any particular phenotypic trait is worth the energy investment it requires.

The Energy Systems Language, also referred to as Energese, Energy Circuit Language, or Generic Systems Symbols, was developed by the ecologist Howard T. Odum and colleagues in the 1950s during studies of the tropical forests funded by the United States Atomic Energy Commission. They are used to compose energy flow diagrams in the field of systems ecology.

Systems ecology A holistic approach to the study of ecological systems

Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.

The concept of transformity was first introduced by David M. Scienceman in collaboration with Howard T. Odum. In 1987 Scienceman proposed that the phrases, "energy quality", "energy quality factor", and "energy transformation ratio", all used by H.T.Odum, be replaced by the word "transformity" (p. 261). This approach aims to solve a long standing issue about the relation of qualitative phenomena to quantitative phenomena often analysed in the physical sciences, which in turn is a synthesis of rationalism with phenomenology. That is to say that it aims to quantify quality.

Energy quality

Energy quality is the contrast between different forms of energy, the different trophic levels in ecological systems and the propensity of energy to convert from one form to another. The concept refers to the empirical experience of the characteristics, or qualia, of different energy forms as they flow and transform. It appeals to our common perception of the heat value, versatility, and environmental performance of different energy forms and the way a small increment in energy flow can sometimes produce a large transformation effect on both energy physical state and energy. For example the transition from a solid state to liquid may only involve a very small addition of energy. Methods of evaluating energy quality are sometimes concerned with developing a system of ranking energy qualities in hierarchical order.

Maximum power principle

The maximum power principle or Lotka's principle has been proposed as the fourth principle of energetics in open system thermodynamics, where an example of an open system is a biological cell. According to Howard T. Odum, "The maximum power principle can be stated: During self-organization, system designs develop and prevail that maximize power intake, energy transformation, and those uses that reinforce production and efficiency."

Research concerning the relationship between the thermodynamic quantity entropy and the evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy.

Quantum thermodynamics study of quantum-mechanical thermodynamic systems and processes

Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905 Einstein argued that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules. Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs from quantum statistical mechanics in the emphasis on dynamical processes out of equilibrium. In addition there is a quest for the theory to be relevant for a single individual quantum system.

References