Energetics

Last updated

Energetics (also called energy economics) is the study of energy under transformation. Because energy flows at all scales, from the quantum level to the biosphere and cosmos, energetics is a very broad discipline, encompassing for example thermodynamics, chemistry, biological energetics, biochemistry and ecological energetics. Where each branch of energetics begins and ends is a topic of constant debate. For example, Lehninger (1973, p. 21) contended that when the science of thermodynamics deals with energy exchanges of all types, it can be called energetics.

Energy transformation process of changing energy from one of its forms into another

Energy transformation, also known as energy conversion, is the process of changing energy from one form into another. In physics, energy is a quantity that provides the capacity to perform work. In addition to being convertible, according to the law of conservation of energy, energy is transferable to a different location or object, but it cannot be created or destroyed.

Biosphere The global sum of all ecosystems on Earth

The biosphere also known as the ecosphere, is the worldwide sum of all ecosystems. It can also be termed the zone of life on Earth, a closed system, and largely self-regulating. By the most general biophysiological definition, the biosphere is the global ecological system integrating all living beings and their relationships, including their interaction with the elements of the lithosphere, geosphere, hydrosphere, and atmosphere. The biosphere is postulated to have evolved, beginning with a process of biopoiesis or biogenesis, at least some 3.5 billion years ago.

Cosmos orderly or harmonious system

The cosmos is the universe. Using the word cosmos rather than the word universe implies viewing the universe as a complex and orderly system or entity; the opposite of chaos. The cosmos, and our understanding of the reasons for its existence and significance, are studied in cosmology – a very broad discipline covering any scientific, religious, or philosophical contemplation of the cosmos and its nature, or reasons for existing. Religious and philosophical approaches may include in their concepts of the cosmos various spiritual entities or other matters deemed to exist outside our physical universe.

Contents

Aims

In general, energetics is concerned with defining relationships to describe the tendencies of energy flows and storages under transformation, defined here as phenomena which behave like historical invariants under repeated observations. When some critical number of people have observed such invariance, such a principle is usually then given the status of a 'fundamental law' of science. As in all scientific inquiry, whether a theorem or principle is considered a fundamental law appears to depend on how many people agree to the proposition. The ultimate aim of energetics therefore is the description of fundamental laws. Philosophers of science have held that the fundamental laws of thermodynamics can be treated as laws of energetics, (Reiser 1926, p. 432). By continuing to more accurately describe these laws, energetics aims to produce reliable predictions about energy flow and storage transformations at any scale.

Energy storage capture of energy produced at one time for use at a later time

Energy storage is the capture of energy produced at one time for use at a later time. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.

A physical law or a law of physics is a statement "inferred from particular facts, applicable to a defined group or class of phenomena, and expressible by the statement that a particular phenomenon always occurs if certain conditions be present." Physical laws are typically conclusions based on repeated scientific experiments and observations over many years and which have become accepted universally within the scientific community. The production of a summary description of our environment in the form of such laws is a fundamental aim of science. These terms are not used the same way by all authors.

Laws of thermodynamics law that defines fundamental physical quantities that characterize thermodynamic systems and their behavior

The four laws of thermodynamics define fundamental physical quantities that characterize thermodynamic systems at thermal equilibrium. The laws describe how these quantities behave under various circumstances, and preclude the possibility of certain phenomena.

History

Energetics has a controversial history. Some authors maintain that the its origins may be found in the work of the ancient Greeks, but that the mathematical formalisation began with the work of Leibniz. Richard de Villamil (1928) said that Rankine formulated the science of energetics in his paper Outlines of the Science of Energetics published in the Proceedings of the Philosophical Society of Glasgow in 1855. W. Ostwald and E. Mach subsequently developed the study, and by the late 1800s energetics was understood to be incompatible with the atomic view of the atom forwarded by Boltzmann's gas theory. Proof of the atom settled the dispute but not without significant damage. In the 1920s Lotka attempted to build on Boltzmann's views through a mathematical synthesis of energetics with biological evolutionary theory. Lotka proposed that the selective principle of evolution was one which favoured the maximum useful energy flow transformation. This view subsequently influenced the further development of ecological energetics, especially the work of Howard T. Odum.

Gottfried Wilhelm Leibniz German mathematician and philosopher

Gottfried Wilhelm (von) Leibniz was a prominent German polymath and philosopher in the history of mathematics and the history of philosophy. His most notable accomplishment was conceiving the ideas of differential and integral calculus, independently of Isaac Newton's contemporaneous developments. Mathematical works have always favored Leibniz's notation as the conventional expression of calculus, while Newton's notation became unused. It was only in the 20th century that Leibniz's law of continuity and transcendental law of homogeneity found mathematical implementation. He became one of the most prolific inventors in the field of mechanical calculators. While working on adding automatic multiplication and division to Pascal's calculator, he was the first to describe a pinwheel calculator in 1685 and invented the Leibniz wheel, used in the arithmometer, the first mass-produced mechanical calculator. He also refined the binary number system, which is the foundation of all digital computers.

Lieutenant-Colonel Richard de Villamil (1850–1936) was a British army officer and physicist, who wrote a biography of Isaac Newton.

William John Macquorn Rankine civil engineer

Prof William John Macquorn Rankine LLD was a Scottish mechanical engineer who also contributed to civil engineering, physics and mathematics. He was a founding contributor, with Rudolf Clausius and William Thomson, to the science of thermodynamics, particularly focusing on the first of the three thermodynamic laws. He developed the Rankine scale, an equivalent to the Kelvin scale of temperature, but in degrees Fahrenheit rather than centigrade.

De Villamil attempted to clarify the scope of energetics with respect to other branches of physics by positing a system that divides mechanics into two branches; energetics (the science of energy), and "pure", "abstract" or "rigid" dynamics (the science of momentum). According to Villamil energetics can be mathematically characterised by scalar equations, and rigid dynamics by vector equations. In this division the dimensions for dynamics are space, time and mass, and for energetics, length, time and mass (Villamil 1928, p. 9). This division is made according to fundamental suppositions about the properties of bodies, e.g.:

Mechanics is that area of science concerned with the behaviour of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment. The scientific discipline has its origins in Ancient Greece with the writings of Aristotle and Archimedes. During the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for what is now known as classical mechanics. It is a branch of classical physics that deals with particles that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as a branch of science which deals with the motion of and forces on objects. The field is yet less widely understood in terms of quantum theory.

Dynamics is the branch of classical mechanics concerned with the study of forces and their effects on motion. Isaac Newton defined the fundamental physical laws which govern dynamics in physics, especially his second law of motion.

Momentum conserved physical quantity related to the motion of a body

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction in three-dimensional space. If m is an object's mass and v is the velocity, then the momentum is

  1. Are the particles comprising the system rigidly fixed together?
  2. Is there any machinery for stopping moving bodies?

In Villamil's classification system, dynamics says yes to 1 and no to 2, whereas energetics says no to 1 and yes to 2. Therefore, in Villamil's system, dynamics assumes that particles are rigidly fixed together and cannot vibrate, and consequently must all be at zero kelvin. The conservation of momentum is a consequence of this view, however it is considered valid only in logic and not to be a true representation of the facts (Villamil, p. 96). In contrast energetics does not assume that particles are rigidly fixed together, and thus are free to vibrate, and consequently can be at non-zero temperatures.

Theories

Ecological analysis of CO2 in an ecosystem Genomics GTL Program Payoffs.jpg
Ecological analysis of CO2 in an ecosystem

As a general statement of energy flows under transformation, the principles of energetics include the first four laws of thermodynamics which seek a rigorous description. However the precise place of the laws of thermodynamics within the principles of energetics is a topic currently under debate. If the ecologist Howard T. Odum was right, the principles of energetics take into consideration a hierarchical ordering of energy forms, which aims to account for the concept of energy quality, and the evolution of the universe. Albert Lehninger (1973, p. 2) called these hierarchical orderings the

Howard Thomas Odum, usually cited as H. T. Odum, was an American ecologist. He is known for his pioneering work on ecosystem ecology, and for his provocative proposals for additional laws of thermodynamics, informed by his work on general systems theory.

Energy quality

Energy quality is the contrast between different forms of energy, the different trophic levels in ecological systems and the propensity of energy to convert from one form to another. The concept refers to the empirical experience of the characteristics, or qualia, of different energy forms as they flow and transform. It appeals to our common perception of the heat value, versatility, and environmental performance of different energy forms and the way a small increment in energy flow can sometimes produce a large transformation effect on both energy physical state and energy. For example the transition from a solid state to liquid may only involve a very small addition of energy. Methods of evaluating energy quality are sometimes concerned with developing a system of ranking energy qualities in hierarchical order.

... successive stages in the flow of energy through the biological macrocosm

Odum proposed 3 further energetic principles and one corollary that take energy hierarchy into account. The first four principles of energetics are related to the same numbered laws of thermodynamics, and are expanded upon in that article.

See also

Related Research Articles

Entropy physical property of the state of a system, measure of disorder

In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is closely related to the number Ω of microscopic configurations that are consistent with the macroscopic quantities that characterize the system. Under the assumption that each microstate is equally probable, the entropy is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant kB. Formally,

The following outline is provided as an overview of and topical guide to physics:

Statistical mechanics is one of the pillars of modern physics. It is necessary for the fundamental study of any physical system that has a large number of degrees of freedom. The approach is based on statistical methods, probability theory and the microscopic physical laws.

Thermodynamics branch of physics concerned with heat, work, temperature, and thermal or internal energy

Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of bodies of matter. The behavior of these quantities is governed by the four laws of thermodynamics, irrespective of the specific composition of the material or system in question. The laws of thermodynamics are explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering.

Scientific law statement based on repeated experimental observations that describes some aspects of the universe

The laws of science, also called scientific laws or scientific principles, are statements that describe or predict a range of natural phenomena. Each scientific law is a statement based on repeated experimental observations that describes some aspect of the Universe. The term law has diverse usage in many cases across all fields of natural science. Scientific laws summarize and explain a large collection of facts determined by experiment, and are tested based on their ability to predict the results of future experiments. They are developed either from facts or through mathematics, and are strongly supported by empirical evidence. It is generally understood that they reflect causal relationships fundamental to reality, and are discovered rather than invented.

Alfred J. Lotka American mathematician

Alfred James Lotka was a US mathematician, physical chemist, and statistician, famous for his work in population dynamics and energetics. An American biophysicist, Lotka is best known for his proposal of the predator–prey model, developed simultaneously but independently of Vito Volterra. The Lotka–Volterra model is still the basis of many models used in the analysis of population dynamics in ecology.

Ludwig Boltzmann Austrian physicist

Ludwig Eduard Boltzmann was an Austrian physicist and philosopher whose greatest achievement was in the development of statistical mechanics, which explains and predicts how the properties of atoms determine the physical properties of matter.

Emergy is the amount of energy that was consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources Each form is generated by transformation processes in nature and each has a different ability to support work in natural and in human systems. The recognition of these quality differences is a key concept.

Biological thermodynamics is the quantitative study of the energy transductions that occur in or between living organisms, structures, and cells and of the nature and function of the chemical processes underlying these transductions. Biological thermodynamics may address the question of whether the benefit associated with any particular phenotypic trait is worth the energy investment it requires.

The Energy Systems Language, also referred to as Energese, Energy Circuit Language, or Generic Systems Symbols, was developed by the ecologist Howard T. Odum and colleagues in the 1950s during studies of the tropical forests funded by the United States Atomic Energy Commission. They are used to compose energy flow diagrams in the field of systems ecology.

Systems ecology A holistic approach to the study of ecological systems

Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems. Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.

The concept of transformity was first introduced by David M. Scienceman in collaboration with Howard T. Odum. In 1987 Scienceman proposed that the phrases, "energy quality", "energy quality factor", and "energy transformation ratio", all used by H.T.Odum, be replaced by the word "transformity" (p. 261). This approach aims to solve a long standing issue about the relation of qualitative phenomena to quantitative phenomena often analysed in the physical sciences, which in turn is a synthesis of rationalism with phenomenology. That is to say that it aims to quantify quality.

Environmental humanities

The environmental humanities is an interdisciplinary area of research, drawing on the many environmental sub-disciplines that have emerged in the humanities over the past several decades. The environmental humanities aim to help bridge traditional divides between the sciences and the humanities, as well as between Western, Eastern and Indigenous ways of relating to the natural world and the place of humans within it.

There are close parallels between the mathematical expressions for the thermodynamic entropy, usually denoted by S, of a physical system in the statistical thermodynamics established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s, and the information-theoretic entropy, usually expressed as H, of Claude Shannon and Ralph Hartley developed in the 1940s. Shannon commented on the similarity upon publicizing information theory in A Mathematical Theory of Communication.

Maximum power principle

The maximum power principle or Lotka's principle has been proposed as the fourth principle of energetics in open system thermodynamics, where an example of an open system is a biological cell. According to Howard T. Odum, "The maximum power principle can be stated: During self-organization, system designs develop and prevail that maximize power intake, energy transformation, and those uses that reinforce production and efficiency."

Research concerning the relationship between the thermodynamic quantity entropy and the evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy. The 1944 book What is Life? by Nobel-laureate physicist Erwin Schrödinger stimulated research in the field. In his book, Schrödinger originally stated that life feeds on negative entropy, or negentropy as it is sometimes called, but in a later edition corrected himself in response to complaints and stated the true source is free energy. More recent work has restricted the discussion to Gibbs free energy because biological processes on Earth normally occur at a constant temperature and pressure, such as in the atmosphere or at the bottom of an ocean, but not across both over short periods of time for individual organisms.

Corrado Giannantoni is an Italian nuclear scientist.

Debra Searles is the professional name for an Australian theoretical chemist whose married name is Debra Bernhardt. She is best known for her contributions towards understanding the Fluctuation Theorem. This theorem shows the Second law of thermodynamics and the Zeroth law of thermodynamics can be derived mathematically rather than postulated as laws of Nature.

References