Entrainment (hydrodynamics)

Last updated

Entrainment is the transport of fluid across an interface between two bodies of fluid by a shear-induced turbulent flux. [1] Entrainment is important in turbulent jets, plumes, and gravity currents, and is an ongoing topic of research. [2]

Contents

History

The entrainment hypothesis was first used as a model for flow in plumes by G. I. Taylor. He was studying the use of oil drum fires to clear fog from airplane runways during World War II. [3]

It became a common model of turbulence closure used in environmental and geophysical fluid mechanics. [4]

Applications

Eductors or eductor-jet pumps make use of entrainment. They are used on board ships to pump out flooded compartments: seawater is pumped to the eductor and forced through a jet, and any fluid at the inlet of the eductor is carried along to the outlet, and then up and out of the compartment. Eductors can pump out whatever can flow through them, including water, oil, and small pieces of wood. Another example is the pump-jet, which is used for marine propulsion. Jet pumps are also used to circulate reactor coolant in several designs of boiling water nuclear reactor.

In power generation, this phenomenon is used in steam jet air ejectors to maintain condenser vacuum by removing non-condensible gases from the condenser.

In theorical aerodynamics applications the entrainment velocity, which expresses the rate of change of the entrainment, is often used to solve the von Kármán integral for turbulent boundary layers.

Related Research Articles

<span class="mw-page-title-main">Diffusion pump</span> High vacuum pump

Diffusion pumps use a high speed jet of vapor to direct gas molecules in the pump throat down into the bottom of the pump and out the exhaust. They were the first type of high vacuum pumps operating in the regime of free molecular flow, where the movement of the gas molecules can be better understood as diffusion than by conventional fluid dynamics. Invented in 1915 by Wolfgang Gaede, he named it a diffusion pump since his design was based on the finding that gas cannot diffuse against the vapor stream, but will be carried with it to the exhaust. However, the principle of operation might be more precisely described as gas-jet pump, since diffusion also plays a role in other types of high vacuum pumps. In modern textbooks, the diffusion pump is categorized as a momentum transfer pump.

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

<span class="mw-page-title-main">Osborne Reynolds</span> Anglo-Irish innovator (1842–1912)

Osborne Reynolds was an Irish-born British innovator in the understanding of fluid dynamics. Separately, his studies of heat transfer between solids and fluids brought improvements in boiler and condenser design. He spent his entire career at what is now the University of Manchester.

In fluid dynamics, a gravity current or density current is a primarily horizontal flow in a gravitational field that is driven by a density difference in a fluid or fluids and is constrained to flow horizontally by, for instance, a ceiling. Typically, the density difference is small enough for the Boussinesq approximation to be valid. Gravity currents can be thought of as either finite in volume, such as the pyroclastic flow from a volcano eruption, or continuously supplied from a source, such as warm air leaving the open doorway of a house in winter. Other examples include dust storms, turbidity currents, avalanches, discharge from wastewater or industrial processes into rivers, or river discharge into the ocean.

<span class="mw-page-title-main">Injector</span> Type of pump using high pressure fluid to entrain a lower pressure fluid

An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts except a valve to control inlet flow.

<span class="mw-page-title-main">Turbulence modeling</span> Use of mathematical models to simulate turbulent flow

In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.

<span class="mw-page-title-main">Plume (fluid dynamics)</span> Column of one fluid moving through another

In hydrodynamics, a plume or a column is a vertical body of one fluid moving through another. Several effects control the motion of the fluid, including momentum (inertia), diffusion and buoyancy. Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively. Flows between these two limits are usually described as forced plumes or buoyant jets. "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise. Situations where the density of the plume fluid is greater than its surroundings, but the flow has sufficient initial momentum to carry it some distance vertically, are described as being negatively buoyant.

<span class="mw-page-title-main">Eddy (fluid dynamics)</span> Swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime

In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.

<span class="mw-page-title-main">Roddam Narasimha</span> Indian scientist (1933–2020)

Roddam Narasimha FRS was an Indian aerospace scientist and fluid dynamicist. He was a professor of Aerospace Engineering at the Indian Institute of Science (1962–1999), director of the National Aerospace Laboratories (1984–1993) and the chairman of the Engineering Mechanics Unit at Jawaharlal Nehru Centre for Advanced Scientific Research. He was the DST Year-of-Science Chair Professor at JNCASR and concurrently held the Pratt & Whitney Chair in Science and Engineering at the University of Hyderabad. Narasimha was awarded the Padma Vibhushan, India's second-highest civilian award, in 2013. for his contributions to advance India's aerospace technology.

<span class="mw-page-title-main">Bedform</span> Geological feature resulting from the movement of bed material by fluid flow

A bedform is a geological feature that develops at the interface of fluid and a moveable bed, the result of bed material being moved by fluid flow. Examples include ripples and dunes on the bed of a river. Bedforms are often preserved in the rock record as a result of being present in a depositional setting. Bedforms are often characteristic to the flow parameters, and may be used to infer flow depth and velocity, and therefore the Froude number.

<span class="mw-page-title-main">Double diffusive convection</span> Convection with two density gradients

Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion.

<span class="mw-page-title-main">Stewart Turner</span> Australian geophysicist (1930–2022)

John Stewart Turner, FAA, FRS was an Australian geophysicist.

The Stuart number (N), also known as magnetic interaction parameter, is a dimensionless number of fluids, i.e. gases or liquids.

In fluid dynamics, and oceanography, Langmuir turbulence is a turbulent flow with coherent Langmuir circulation structures that exist and evolve over a range of spatial and temporal scales. These structures arise through an interaction between the ocean surface waves and the currents.

The term gravity current intrusion denotes the fluid mechanics phenomenon within which a fluid intrudes with a predominantly horizontal motion into a separate stratified fluid, typically along a plane of neutral buoyancy. This behaviour distinguishes the difference between gravity current intrusions and gravity currents, as intrusions are not restrained by a well-defined boundary surface. As with gravity currents, intrusion flow is driven within a gravity field by density differences typically small enough to allow for the Boussinesq approximation.

Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and/or time scales. This is usually achieved by immersing in a moving fluid a body with a multiscale, often fractal-like, arrangement of length scales. This arrangement of scales can be either passive or active

Owen Martin Phillips was a U.S. physical oceanographer and geophysicist who spent most of his career at the Johns Hopkins University.

<span class="mw-page-title-main">Peyman Givi</span> Persian-American rocket scientist and engineer

Peyman Givi is a Persian-American rocket scientist and engineer.

<span class="mw-page-title-main">Joseph Katz (professor)</span> American fluid dynamicist

Joseph Katz is an Israel-born American fluid dynamicist, known for his work on experimental fluid mechanics, cavitation phenomena and multiphase flow, turbulence, turbomachinery flows and oceanography flows, flow-induced vibrations and noise, and development of optical flow diagnostics techniques, including Particle Image Velocimetry (PIV) and Holographic Particle Image Velocimetry (HPIV). As of 2005, he is the William F. Ward Sr. Distinguished Professor at the Department of Mechanical Engineering of the Whiting School of Engineering at the Johns Hopkins University.

Bruce Morton was an Australian/New Zealand applied mathematician.

References

  1. Turner, J. S. (1979-12-20). Buoyancy Effects in Fluids. Cambridge University Press. p. 167. ISBN   978-0-521-29726-4.
  2. Scase, M. J.; Caulfield, C. P.; Dalziel, S. B.; Hunt, J. C. R. (2006). "Time-dependent plumes and jets with decreasing source strengths". J. Fluid Mech. 563: 443–461. Bibcode:2006JFM...563..443S. doi:10.1017/S0022112006001212. S2CID   54603125.
  3. Morton, B. R.; Taylor, G. I.; Turner, J. S. (1956-01-24). "Turbulent gravitational convection from maintained and instantaneous sources". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 234 (1196): 1–23. Bibcode:1956RSPSA.234....1M. doi:10.1098/rspa.1956.0011. ISSN   0080-4630. S2CID   98250471.
  4. Turner, J. S. (December 1986). "Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows". Journal of Fluid Mechanics. 173: 431–471. Bibcode:1986JFM...173..431T. doi:10.1017/S0022112086001222. ISSN   1469-7645. S2CID   122678724.