Pump-jet

Last updated
A view of pump-jets operating Pump-jet on NatchanWorld 02.JPG
A view of pump-jets operating
Two of four KaMeWa waterjets on the high-speed ferry Discovery Waterjet on HSS Discovery.jpg
Two of four KaMeWa waterjets on the high-speed ferry Discovery
Typical jet ski pump jet Pump jet.PNG
Typical jet ski pump jet

A pump-jet, hydrojet, or water jet is a marine system that produces a jet of water for propulsion. The mechanical arrangement may be a ducted propeller (axial-flow pump), a centrifugal pump, or a mixed flow pump which is a combination of both centrifugal and axial designs. The design also incorporates an intake to provide water to the pump and a nozzle to direct the flow of water out of the pump. [1]

Contents

Design

This image illustrates the workings of a reversing bucket. 1: Forward thrust, reversing bucket disengaged 2: Reverse thrust, reversing bucket pushes the thrust flow backwards Ship's Waterjet system (cut view) NT.PNG
This image illustrates the workings of a reversing bucket. 1: Forward thrust, reversing bucket disengaged 2: Reverse thrust, reversing bucket pushes the thrust flow backwards
Forward, back, side and turn by pump-jet WaterJet Forward,Back,Side,Turn.svg
Forward, back, side and turn by pump-jet

A pump-jet works by having an intake (usually at the bottom of the hull) that allows water to pass underneath the vessel into the engines. Water enters the pump through this inlet. The pump can be of a centrifugal design for high speeds, or an axial flow pump for low to medium speeds. The water pressure inside the inlet is increased by the pump and forced backwards through a nozzle. With the use of a reversing bucket, reverse thrust can also be achieved for faring backwards, quickly and without the need to change gear or adjust engine thrust. The reversing bucket can also be used to help slow the ship down when braking. This feature is the main reason pump jets are so maneuverable.

The nozzle also provides the steering of the pump-jets. Plates, similar to rudders, can be attached to the nozzle in order to redirect the water flow port and starboard. In a way, this is similar to the principles of air thrust vectoring , a technique which has long been used in launch vehicles (rockets and missiles) then later in military jet-powered aircraft. This provides pumpjet-powered ships with superior agility at sea. Another advantage is that when faring backwards by using the reversing bucket, steering is not inverted, as opposed to propeller-powered ships.

Axial flow

An axial-flow waterjet's pressure is increased by diffusing the flow as it passes through the impeller blades and stator vanes. The pump nozzle then converts this pressure energy into velocity, thus producing thrust. [1]

Axial-flow waterjets produce high volumes at lower velocity, making them well suited to larger low to medium speed craft, the exception being personal water craft, where the high water volumes create tremendous thrust and acceleration as well as high top speeds. But these craft also have high power-to-weight ratios compared to most marine craft. Axial-flow waterjets are by far the most common type of pump.

Mixed flow

Mixed-flow waterjet designs incorporate aspects of both axial flow and centrifugal flow pumps. Pressure is developed by both diffusion and radial outflow. Mixed flow designs produce lower volumes of water at high velocity making them suited for small to moderate craft sizes and higher speeds. Common uses include high speed pleasure craft and waterjets for shallow water river racing (see River Marathon).

Centrifugal flow

Centrifugal-flow waterjet designs make use of radial flow to create water pressure.

Examples of centrifugal designs are the Schottel Pump-Jet and outboard sterndrives. [2]

Advantages

Pump jets have some advantages over bare propellers for certain applications, usually related to requirements for high-speed or shallow-draft operations. These include:

History

The water jet principle in shipping industry can be traced back to 1661 [4] when Toogood and Hayes produced a description of a ship having a central water channel in which either a plunger or centrifugal pump was installed to provide the motive power. [5]

On December 3, 1787, inventor James Rumsey demonstrated a water-jet propelled boat using a steam-powered pump to drive a stream of water from the stern. [6] [ circular reference ] This occurred on the Potomac River at Shepherdstown, Virginia (now West Virginia) before a crowd of witnesses including General Horatio Gates. The 50-foot long boat traveled about one-half mile upriver before returning to the dock. The boat was reported to reach a speed of four mph moving upstream. [7] [8] [9]

On December 21, 1833, Irish engineer John Howard Kyan received a UK patent for propelling ships by a jet of water ejected from the stern. [10]

In April 1932, Italian engineer Secondo Campini demonstrated a pump-jet propelled boat in Venice, Italy. The boat achieved a top speed of 28 knots (32 mph; 52 km/h), a speed comparable to a boat with a conventional engine of similar output. The Italian Navy, who had funded the development of the boat, placed no orders but did veto the sale of the design outside of Italy. [11] [12] The first modern jetboat was developed by New Zealand engineer Sir William Hamilton in the mid 1950s. [13]

Uses

Pump-jets were once limited to high-speed pleasure craft (such as jet skis and jetboats) and other small vessels, but since 2000 the desire for high-speed vessels has increased [ citation needed ] and thus the pump-jet is gaining popularity on larger craft, military vessels and ferries. On these larger craft, they can be powered by diesel engines or gas turbines. Speeds of up to 40 knots (45 mph; 75 km/h) can be achieved with this configuration, even with a displacement hull. [14]

Pump-jet powered ships are very maneuverable. Examples of ships using pumpjets are the Car Nicobar-class patrol vessels, the Hamina-class missile boats, Valour-class frigates, the Stena high-speed sea service ferries, the Royal Navy Swiftsure, Trafalgar and Astute-class submarines, as well as the United States Seawolf and Virginia-classes, and the Russian Borei-class submarines. They are also used by the United States littoral combat ships.

See also

Notes

  1. 1 2 http://www.hamiltonmarine.co.nz/includes/files_cms/file/JetTorque%2008.pdf Archived 2018-01-20 at the Wayback Machine [ bare URL PDF ]
  2. "Yamaha Outboards". Yamaha Outboards. Archived from the original on 2017-06-29. Retrieved 2017-01-02.
  3. "FAS Military Analysis Network: MK-48 Torpedo".
  4. Cartlon, J.S. (2012). Marine Propellers and Propulsion. London. p. 21. doi:10.1016/B978-0-08-097123-0.00002-2.{{cite book}}: CS1 maint: location missing publisher (link)
  5. Wärtsilä patent description
  6. James Rumsey
  7. "Rumsey Steamboat".
  8. "James Rumsey Steamboat – C&O Canal Trust".
  9. "Rumsey Exhibit – 3-4 – the Museum of the Berkeley Springs".
  10. "Biographies of Civil engineers, etc".
  11. Buttler, Tony (2019-09-19). Jet Prototypes of World War II: Gloster, Heinkel, and Caproni Campini's wartime jet programmes. Bloomsbury Publishing. ISBN   978-1-4728-3597-0.
  12. Alegi, Gregory (2014-01-15). "Secondo's Slow Burner, Campini Caproni and the C.C.2". The Aviation Historian . No. 6. United Kingdom. p. 76. ISSN   2051-1930.
  13. "Bill Hamilton". 23 December 2005.
  14. The Information page of the Stena HSS 1500 Archived 2009-12-08 at the Wayback Machine

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, pulse jet, or scramjet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Propeller</span> Device that transmits rotational power into linear thrust on a fluid

A propeller is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon a working fluid such as water or air. Propellers are used to pump fluid through a pipe or duct, or to create thrust to propel a boat through water or an aircraft through air. The blades are shaped so that their rotational motion through the fluid causes a pressure difference between the two surfaces of the blade by Bernoulli's principle which exerts force on the fluid. Most marine propellers are screw propellers with helical blades rotating on a propeller shaft with an approximately horizontal axis.

<span class="mw-page-title-main">Steam turbine</span> Machine that uses steam to rotate a shaft

A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbine involves advanced metalwork to form high-grade steel alloys into precision parts using technologies that first became available in the 20th century; continued advances in durability and efficiency of steam turbines remains central to the energy economics of the 21st century.

<span class="mw-page-title-main">Gas turbine</span> Type of internal and continuous combustion engine

A gas turbine or gas turbine engine is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part and are, in the direction of flow:

<span class="mw-page-title-main">Jetboat</span> Boat propelled by a jet of water ejected from the back of the craft

A jetboat is a boat propelled by a jet of water ejected from the back of the craft. Unlike a powerboat or motorboat that uses an external propeller in the water below or behind the boat, a jetboat draws the water from under the boat through an intake and into a pump-jet inside the boat, before expelling it through a nozzle at the stern.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Caproni Campini N.1</span> Experimental Italian jet aircraft of the 1930/40s

The Caproni Campini N.1, also known as the C.C.2, is an experimental jet aircraft built in the 1930s by Italian aircraft manufacturer Caproni. The N.1 first flew in 1940 and was briefly regarded as the first successful jet-powered aircraft in history, before news emerged of the German Heinkel He 178's first flight a year earlier.

<span class="mw-page-title-main">Runabout (boat)</span> Boat type

A runabout is any small motorboat holding between four and eight people, well suited to moving about on the water. Characteristically between 20' and 35' in length, runabouts are used for pleasure activities like boating, fishing, and water skiing, as a ship's tender for larger vessels, or in racing. Some common runabout types are bow rider, center console, cuddy boat and walkaround. The world's largest runabout, Pardon Me, is 48 feet long and owned by the Antique Boat Museum in Clayton, New York.

A propulsor is a mechanical device that gives propulsion. The word is commonly used in the marine vernacular, and implies a mechanical assembly that is more complicated than a propeller. The Kort nozzle, pump-jet and rim-driven thruster are examples.

<span class="mw-page-title-main">Voith Schneider Propeller</span> Proprietary marine propulsion system

The Voith Schneider Propeller (VSP) is a specialized marine propulsion system (MPS) manufactured by the Voith Group based on a cyclorotor design. It is highly maneuverable, being able to change the direction of its thrust almost instantaneously. It is widely used on tugs and ferries.

<span class="mw-page-title-main">Impeller</span> Rotor used to increase (or decrease in case of turbines) the pressure and flow of a fluid or gas

An impeller, or impellor, is a driven rotor used to increase the pressure and flow of a fluid. It is the opposite of a turbine, which extracts energy from, and reduces the pressure of, a flowing fluid.

<span class="mw-page-title-main">Surface effect ship</span> Watercraft with air cushion and twin hulls

A surface effect ship (SES) or sidewall hovercraft is a watercraft that has both an air cushion, like a hovercraft, and twin hulls, like a catamaran. When the air cushion is in use, a small portion of the twin hulls remains in the water. When the air cushion is turned off ("off-cushion" or "hull borne"), the full weight of the vessel is supported by the buoyancy of the twin hulls.

<span class="mw-page-title-main">Turbomachinery</span> Machine for exchanging energy with a fluid

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid. It is an important application of fluid mechanics.

<span class="mw-page-title-main">Water jet cutter</span> Industrial tool

A water jet cutter, also known as a water jet or waterjet, is an industrial tool capable of cutting a wide variety of materials using an extremely high-pressure jet of water, or a mixture of water and an abrasive substance. The term abrasive jet refers specifically to the use of a mixture of water and an abrasive to cut hard materials such as metal, stone or glass, while the terms pure waterjet and water-only cutting refer to waterjet cutting without the use of added abrasives, often used for softer materials such as wood or rubber.

<span class="mw-page-title-main">Maneuvering thruster</span> Transverse or steerable propulsion device in a watercraft

Manoeuvering thrusters are transversal propulsion devices built into or mounted to either the bow or stern of a ship or boat to make it more manoeuvrable. Bow thrusters make docking easier, since they allow the captain to turn the vessel to port or starboard side, without using the main propulsion mechanism which requires some forward motion for turning; The effectiveness of a thruster is curtailed by any forward motion due to the Coandă effect. A stern thruster is of the same principle, fitted at the stern. Sufficiently large vessels often have multiple bow thrusters and stern thrusters.

<span class="mw-page-title-main">Kitchen rudder</span> Type of directional propulsion system for vessels

The Kitchen rudder is the familiar name for "Kitchen's Patent Reversing Rudders", a combination rudder and directional propulsion delivery system for relatively slow speed displacement boats which was invented in the early 20th century by John G. A. Kitchen of Lancashire, England. It turns the rudder into a directional thruster, and allows the engine to maintain constant revolutions and direction of drive shaft rotation while altering thrust by use of a control which directs thrust forward or aft. Only the rudder pivots; the propeller itself is on a fixed shaft and does not.

<span class="mw-page-title-main">Marine propulsion</span> Systems for generating thrust for ships and boats on water

Marine propulsion is the mechanism or system used to generate thrust to move a watercraft through water. While paddles and sails are still used on some smaller boats, most modern ships are propelled by mechanical systems consisting of an electric motor or internal combustion engine driving a propeller, or less frequently, in pump-jets, an impeller. Marine engineering is the discipline concerned with the engineering design process of marine propulsion systems.

Internal drive propulsion or water-jet propulsion is a form of marine propulsion used in recreational boating. Like other forms of motorized boating, internal drive propulsion employs a motor that turns a propeller to move the boat forward. The primary difference between internal drive boats and external drive boats is that the propeller is enclosed inside the hull of an internal drive boat whereas the propeller is exposed outside the hull of a stern drive, V-drive or straight shaft drive boat.

<span class="mw-page-title-main">Ducted propeller</span> Marine propeller with a non-rotating nozzle

A ducted propeller, also known as a Kort nozzle, is a marine propeller fitted with a non-rotating nozzle. It is used to improve the efficiency of the propeller and is especially used on heavily loaded propellers or propellers with limited diameter. It was developed first by Luigi Stipa (1931) and later by Ludwig Kort (1934). The Kort nozzle is a shrouded propeller assembly for marine propulsion. The cross-section of the shroud has the form of a foil, and the shroud can offer hydrodynamic advantages over bare propellers, under certain conditions.

References