Environmental impact of Big Tech

Last updated

The environmental impact of Big Tech is a phenomenon in which many aspects of Big Tech contribute to negative impacts on the environment and climate change. In the big data age, technologists and people in general find it valuable to view emerging technologies with a critical lens, one of which is geared toward the environment. As these emerging technologies become more popular, they consider the extent at which they contribute to changes in the environment and whether they are inherently positive or negative.

Contents

A 2022 report from Greenpeace and Stand.earth highlights the technology sector's rapid growth, driving a significant increase in electricity consumption, projected to rise by over 60% between 2020 and 2030. This increase in energy usage is coupled with a rise in carbon emissions attributed to the sector's heavy dependence on fossil fuels. While some Big Tech firms have committed to transitioning to 100% renewable energy for their operations, this commitment has not yet extended to their supply chains. Seven out of ten ranked consumer electronics brands have committed to achieve 100% renewable energy across their own operations by 2030, with Apple, Google, and Microsoft already achieving this goal. [1] In 2023, Big Tech accounted for approximately 4 percent of global greenhouse gas emissions, surpassing those of the aviation industry. [2]

Background

Big tech is a term commonly used to refer to largely growing technologies and companies. Google, Apple, Amazon, Microsoft, Netflix are notably some of the largest companies. One area of concern that has caught the eye of many people who observe these technologies is the carbon footprint that their data centers leave [3] as well as their supply chain carbon emissions. Because these technologies continue to grow, so do the effect they have on the climate and society which has prompted scientists to take a further look into the exact effect that they are making.

This has inspired the area of green computing which hopes to promote sustainability in big tech. Big tech companies have been in competition to remain fast and up to date. Because of this, they seek to have the fastest internet speeds and largest repositories of data to provide their users with the most personalized and appealing experiences. For example, in 2020, Facebook announced that they would invest in undersea cables in Latin America and sub-Saharan Africa to improve internet speeds. [4]

In addition, many companies similarly expand their resources to use large data centers, undersea cables, and other technological extensions in order to increase the quality of their products. Users benefit from these features, but they also leave an effect on the world's climate.

Carbon emissions

In 2021, the big technology sector produced between 2 and 3% of the world's carbon emissions according to the UN's environment program. [5] This number is comparable to global aviation. A source of this is that these companies, such as Google and Meta who are large contributors, are very reliant on carbon-intensive supply chains due to their enterprises being located in countries reliant on fossil fuels. Some example of such countries very dependent on fossil fuels are Oman, Qatar, Kuwait, Saudi Arabia, and Brunei Darussalam. [6]

Electronics Hub, an organization dedicated to providing electronics knowledge for free for electronics enthusiasts, carried out a study on this using publicly available ESG (Environment, Social and Governance) and CSR (Corporate Social Responsibility) reports to find the total direct and indirect carbon emissions figures for 100 of the largest technology companies, ranking them from highest to lowest polluting within the industry. They found that Samsung has the largest carbon footprint of any major company in tech. Specifically, they emit 20.1 million metric tons of CO2 per year. [5] Amazon emits the most of the "Big Five" tech companies, with 16.2 million metric tons of CO2 produced each year. Per employee, Taiwanese semiconductor manufacturer TSMC emits the most, with 209.4 metric tons of CO2 produced for every member of their staff. Onsemi, a US based semiconductor firm, produces the most carbon relative to their earnings, with 405.5 metric tons of CO2 produced for every one million dollars in revenue. [5]

Data centers and the cloud

The cloud is a term used by many of these big tech companies as a virtual space in which a lot of data is kept. The virtual term intuitively has made it seem that the cloud is not something physical that can harm the earth. However, recent studies have shown that the "cloud" is kept alive by very large energy-consuming data centers around the world that do have an impact on climate. Based on the U.S. electric metric, storing 100 GB of data in the cloud every year would produce 0.2 tons of CO2. [7]

As more and more operations are managed in the cloud, the energy required to process and perform those operations is generated by fossil fuels. Studies have shown that over 2700 colocation centers across the US consume vast amounts of electricity and water while providing few human jobs required for operation. Many of these locations are also susceptible to drought such as Dallas and the Bay Area. [8] Anywhere from 3-5 millions gallons of water per day is required to provide energy that allows the centers to operate. This water would be enough for 30,000-50,000 people.

Data from the International Energy Agency shows that centers use 200 TWh (one trillion watt hours) of electricity and generate 3.5% of the global greenhouse gas (GHG) emissions per year. There are three factors that influence the carbon footprint of these data centers.[ citation needed ]

  1. Data centers require electricity to run servers. However, the location of the data center impacts how much emissions are generated by electricity use. Data centers located in areas that have adapted to green power will have a much lower carbon footprint than those located in areas that haven't.
  2. Data centers need water to cool the servers and also can create large water run off. Studies have shown that data centers use up to 5 million gallons of water per day.
  3. Lifespan of equipment determines the frequency of replacements. Every hardware replacement in the colocation center generates a carbon footprint for its sourcing, production, and transportation.

Locations

Number of Data Centers in Various Areas
CountryNumber of Data Centers
US2701
Germany487
UK456
China443
Canada328
Australia287
Netherlands281
France264
Japan207
Russia172
Mexico153
Brazil150
India138
Poland136
Italy131

The energy consumption of data centers is rising exponentially. Data from the United States Data Center Energy Usage Report shows that in 2014, data centers in the U.S. used around 70 billion kWh–which is 1.8% of the nation's total electricity consumption. [8] The report also shows that the data center electricity use increased by around 4% from 2010 to 2014, and energy use is expected to increase. These estimates claimed that the US data centers are expected to use 73 billion kWh in the 2020s.

Devices and e-Waste

Data centers, applications, and architectures are often targeted when analyzing the environmental effect of big tech. However, another substantial source are devices. [9] There are nearly 700 million old "hibernating" mobile phones in Europe alone which amounts to 14,920 tons of gold, silver, copper, palladium, cobalt and lithium. [10] E-waste is also a big source of climate impact. When broken or unwanted electronic items are dumped into landfills, toxic substances such as lead and mercury can leach into soil and water. Another consideration is that electronics also contain valuable non-renewable resources such as gold, silver, copper, platinum, aluminium and cobalt. Because these are thrown away with no attempt of recycling, a lot of precious materials are also wasted. [11]

The UN currently leads the Global E-waste Statistics Partnership which tracks the amount of e-waste in the world. It categorizes e-waste into: temperature-exchange equipment (refrigerators, air conditioners), screens and monitors, lamps, large equipment (washing machines, copiers), small equipment (cameras, smart speakers), and small IT and telecommunications and equipment (phones, routers).

Currently, the amount of e-waste is incalculable due to the fact that it is undocumented. Due to the short life cycles of electronics, we need to replace them frequently. However, they are rarely disposed in a way that would limit its impact on the environment. [12]

Manufacturers also discourage repairing devices by consumers or third parties due to privacy and safety. Along with that, there is the phenomenon that even if repair were easy and accessible, people would still be likely to move on to a new device instead of fixing the one they have. The right to repair could potentially fix the problem of e-waste.

Big tech initiatives

Some of the largest tech companies have vowed to combat climate change. Some have made plans to reach net-zero carbon emissions. Amazon specifically has announced that they aim to reach net-zero carbon emissions across their operations by 2040 by investing in renewable energy, scaling solutions, and collaborating with partners to broaden their impact. [13] They are currently on a path to powering their operations with 100% renewable energy by 2025. Along with Amazon, Apple, Dell, Google, HP, Microsoft, and Nvidia have claimed to reduce their Greenhouse Gas Emissions by 2030. All of these companies seek to invest more into renewable energy. In general, most of these plans follow the outline of hitting three main goals: energy transition, supply chain management, and decarbonization.

Decarbonization and Energy Transition Plan

Companies have instituted plans to curtail absolute GHG emissions within their supply chains. They have also claimed that they will use renewable energy in self-operated stores and facilities.

Supply chain engagement

Companies have identified the importance of supplier engagement in achieving emission reduction goals. Brands have taken measures to intervene with supplies by providing training, incentives, and other financial support. These brands help suppliers set climate targets.

Energy transition

Companies are seeking to procure renewable energy for use in their supply chains. Some companies such as Apple and Google have reported joining the Asia Clean Energy Coalition.

Reducing e-waste

Companies have ideated designing products so that precious metals are easier to extract as well as creating an "eco-label" system. [10] Companies such as Dell have suggested that half of the materials it uses will be "recycled or renewable" by 2030.

Creating a circular economy

The circular electronics partnership is a group of companies that have committed to creating a circular economy. A circular "operating system" allows a product to be collected at the end of life, recovered through any of the R-strategies, and then circulated back into the economy. The Circular Electronics Partnership has gathered to define what a circular product means and how to accomplish it with the goal of tackling e-waste. Their roadmap[ citation needed ] consists of:

  1. Design for circularity
  2. Drive demand for circular products and services
  3. Scale responsible business models
  4. Increase official collection rate
  5. Aggregate for reuse and recycling
  6. Scale secondary material markets

By motivating consumers to buy back products as well as purchase circular products, less electronics will be dumped into landfills. Leaders from many different companies have come together to design this roadmap. The roadmap sets objectives for key areas of the electronics value chain, from design to sourcing and manufacturing through to reverse logistics and recycling. This is the first-time experts, business leaders and global organizations will set a vision and roadmap committing to a circular economy for electronics by 2030 and co-design solutions around this topic. This initiative is led by the World Business Council for Sustainable Development and the World Economic Forum. [14]

Gaps in improvement

While companies have become aware of the issue at hand, many consumers critique potential gaps in their plans as to improve the situation. These gaps have been identified to lie in unambitious decarbonization targets, an unclear roadmap, insufficient financial support and incentives, unbundled renewable energy certificates dependency, and a collaboration gap. The collaboration gap refers to the absence of a leading cause amongst unified members to achieve decarbonization.

Related Research Articles

Green computing, green IT, or ICT sustainability, is the study and practice of environmentally sustainable computing or IT.

<span class="mw-page-title-main">Emission intensity</span> Emission rate of a pollutant

An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.

<span class="mw-page-title-main">Climate change mitigation</span> Actions to reduce net greenhouse gas emissions to limit climate change

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.

<span class="mw-page-title-main">Carbon footprint</span> Concept to quantify greenhouse gas emissions from activities or products

A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.

<span class="mw-page-title-main">Clean technology</span> Any process, product, or service that reduces negative environmental impacts

Clean technology, also called cleantech or climatetech, is any process, product, or service that reduces negative environmental impacts through significant energy efficiency improvements, the sustainable use of resources, or environmental protection activities. Clean technology includes a broad range of technology related to recycling, renewable energy, information technology, green transportation, electric motors, green chemistry, lighting, grey water, and more. Environmental finance is a method by which new clean technology projects can obtain financing through the generation of carbon credits. A project that is developed with concern for climate change mitigation is also known as a carbon project.

<span class="mw-page-title-main">Biomass (energy)</span> Biological material used as a renewable energy source

In the context of energy production, biomass is matter from recently living organisms which is used for bioenergy production. Examples include wood, wood residues, energy crops, agricultural residues including straw, and organic waste from industry and households. Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Sources and amounts of greenhouse gases emitted to the atmosphere from human activities

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

<span class="mw-page-title-main">Greenhouse gas emissions by the United States</span> Climate changing gases from the North American country

The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person.

<span class="mw-page-title-main">Energy policy of China</span>

China is both the world's largest energy consumer and the largest industrial country, and ensuring adequate energy supply to sustain economic growth has been a core concern of the Chinese Government since the founding of the People's Republic of China in 1949. Since the country's industrialization in the 1960s, China is currently the world's largest emitter of greenhouse gases, and coal in China is a major cause of global warming. However, from 2010 to 2015 China reduced energy consumption per unit of GDP by 18%, and CO2 emissions per unit of GDP by 20%. On a per-capita basis, China was only the world's 51st largest emitter of greenhouse gases in 2016. China is also the world's largest renewable energy producer, and the largest producer of hydroelectricity, solar power and wind power in the world. The energy policy of China is connected to its industrial policy, where the goals of China's industrial production dictate its energy demand managements.  

<span class="mw-page-title-main">Greenhouse gas emissions by Australia</span> Release of gases from Australia which contribute to global warming

Greenhouse gas emissions by Australia totalled 533 million tonnes CO2-equivalent based on greenhouse gas national inventory report data for 2019; representing per capita CO2e emissions of 21 tons, three times the global average. Coal was responsible for 30% of emissions. The national Greenhouse Gas Inventory estimates for the year to March 2021 were 494.2 million tonnes, which is 27.8 million tonnes, or 5.3%, lower than the previous year. It is 20.8% lower than in 2005. According to the government, the result reflects the decrease in transport emissions due to COVID-19 pandemic restrictions, reduced fugitive emissions, and reductions in emissions from electricity; however, there were increased greenhouse gas emissions from the land and agriculture sectors.

<span class="mw-page-title-main">Energy in Switzerland</span>

Energy in Switzerland is transitioning towards sustainability, targeting net zero emissions by 2050 and a 50% reduction in greenhouse gas emissions by 2030.

<span class="mw-page-title-main">Environmental impact of the energy industry</span>

The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. Scientific consensus on some of the main human activities that contribute to global warming are considered to be increasing concentrations of greenhouse gases, causing a warming effect, global changes to land surface, such as deforestation, for a warming effect, increasing concentrations of aerosols, mainly for a cooling effect.

The United Kingdom is committed to legally binding greenhouse gas emissions reduction targets of 34% by 2020 and 80% by 2050, compared to 1990 levels, as set out in the Climate Change Act 2008. Decarbonisation of electricity generation will form a major part of this reduction and is essential before other sectors of the economy can be successfully decarbonised.

<span class="mw-page-title-main">Carbon Recycling International</span> Icelandic technology company

Carbon Recycling International (CRI) is an Icelandic limited liability company which has developed a technology designed to produce renewable methanol, also known as e-methanol, from carbon dioxide and hydrogen, using water electrolysis or, alternatively, hydrogen captured from industrial waste gases. The technology is trademarked by CRI as Emissions-to-Liquids (ETL) and the renewable methanol produced by CRI is trademarked as Vulcanol. In 2011 CRI became the first company to produce and sell liquid renewable transport fuel produced using only carbon dioxide, water and electricity from renewable sources.

CELSA Group is a multinational group of steel companies headquartered in Spain, mainly in the industry of steel reinforcement or rebar.

<span class="mw-page-title-main">Greenhouse gas emissions by China</span> Emissions of gases harmful to the climate from China

China's greenhouse gas emissions are the largest of any country in the world both in production and consumption terms, and stem mainly from coal burning, including coal power, coal mining, and blast furnaces producing iron and steel. When measuring production-based emissions, China emitted over 14 gigatonnes (Gt) CO2eq of greenhouse gases in 2019, 27% of the world total. When measuring in consumption-based terms, which adds emissions associated with imported goods and extracts those associated with exported goods, China accounts for 13 gigatonnes (Gt) or 25% of global emissions. According to the Carbon Majors Database, Chinese state coal production alone accounts for 14% of historic global emissions.

<span class="mw-page-title-main">Environmental effects of bitcoin</span>

The environmental effects of bitcoin are significant. Bitcoin mining, the process by which bitcoins are created and transactions are finalized, is energy-consuming and results in carbon emissions, as about half of the electricity used is generated through fossil fuels. Moreover, bitcoins are mined on specialized computer hardware with a short lifespan, resulting in electronic waste. The amount of e-waste generated by bitcoin mining is comparable to that generated by the Netherlands. Scholars argue that bitcoin mining could support renewable energy development by utilizing surplus electricity from wind and solar. Bitcoin's environmental impact has attracted the attention of regulators, leading to incentives or restrictions in various jurisdictions.

Carbon tech is a group of existing and emerging technologies that are rapidly transforming oil and gas to low emissions energy. Combined, these technologies take a circular carbon economy approach for managing and reducing carbon footprints, while optimizing biological and industry processes. It is built on the principles of the circular economy for managing carbon emissions: to reduce the amount of carbon emissions entering the atmosphere, to reuse carbon emissions as a feedstock in different industries, to recycle carbon through the natural carbon cycle with bio energy, and to remove carbon and store it. Carbon tech provides a third option for climate and environmental policy as an alternate to the binary business as usual and radical change.

<span class="mw-page-title-main">Environmental impacts of artificial intelligence</span>

The environmental impacts of artificial intelligence (AI) may vary significantly. Many deep learning methods have significant carbon footprints and water usage. Some scientists have suggested that artificial intelligence may provide solutions to environmental problems.

References

  1. "Supply Change - Climate commitments and renewable energy progress by consumer electronics brands and their top suppliers" (PDF). Greenpeace / Stand.earth. 2022.
  2. Calma, Justine (2023-10-16). "Apple has an edge over its competitors in the fight against climate change". The Verge. Retrieved 2024-04-24.
  3. Knapp, Alex. "Current Climate: Big Tech's Massive Carbon Footprint". Forbes.
  4. "Facebook Connectivity Investments to Deliver Over $200 Billion in Economic Benefits". July 6, 2020.
  5. 1 2 3 Navarro, Rodrigo (February 13, 2023). "The Carbon Emissions of Big Tech". ElectronicsHub.
  6. "Fossil Fuel Dependency By Country". WorldAtlas. April 25, 2017.
  7. "Measuring electricity - U.S. Energy Information Administration (EIA)". www.eia.gov.
  8. 1 2 "Carbon Footprint of Data Centers & Data Storage per Country (Calculator)". 26 January 2023.
  9. Violino, Bob (September 9, 2023). "Much of the tech world's climate impact is still being overlooked, and it's accelerating". CNBC.
  10. 1 2 MacNamara, Kelly. "Big Tech backs plan to tackle e-waste crisis". techxplore.com.
  11. "What is e-waste and what can we do about it?". www.nhm.ac.uk.
  12. "Cleaning Up the E-Waste Mess: Big Tech Needs to Do More". PCMAG.
  13. "Driving Climate Solutions". Sustainability (US).
  14. Kenyon, Tilly (December 13, 2021). "How are technology firms tackling e-waste?". technologymagazine.com.