Is there a dense set of points in the plane at rational distances from each other?
In mathematics, the Erdős–Ulam problem asks whether the plane contains a dense set of points whose Euclidean distances are all rational numbers. It is named after Paul Erdős and Stanislaw Ulam.
The Erdős–Anning theorem states that a set of points with integer distances must either be finite or lie on a single line. [1] However, there are other infinite sets of points with rational distances. For instance, on the unit circle, let S be the set of points
where is restricted to values that cause to be a rational number. For each such point, both and are themselves both rational, and if and define two points in S, then their distance is the rational number
More generally, a circle with radius contains a dense set of points at rational distances to each other if and only if is rational. [2] However, these sets are only dense on their circle, not dense on the whole plane.
In 1946, Stanislaw Ulam asked whether there exists a set of points at rational distances from each other that forms a dense subset of the Euclidean plane. [2] While the answer to this question is still open, József Solymosi and Frank de Zeeuw showed that the only irreducible algebraic curves that contain infinitely many points at rational distances are lines and circles. [3] Terence Tao and Jafar Shaffaf independently observed that, if the Bombieri–Lang conjecture is true, the same methods would show that there is no infinite dense set of points at rational distances in the plane. [4] [5] Using different methods, Hector Pasten proved that the abc conjecture also implies a negative solution to the Erdős–Ulam problem. [6]
If the Erdős–Ulam problem has a positive solution, it would provide a counterexample to the Bombieri–Lang [4] [5] conjecture and to the abc conjecture. [6] It would also solve Harborth's conjecture, on the existence of drawings of planar graphs in which all distances are integers. If a dense rational-distance set exists, any straight-line drawing of a planar graph could be perturbed by a small amount (without introducing crossings) to use points from this set as its vertices, and then scaled to make the distances integers. However, like the Erdős–Ulam problem, Harborth's conjecture remains unproven.
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The -sphere is the setting for -dimensional spherical geometry.
In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.
In geometry, a nephroid is a specific plane curve. It is a type of epicycloid in which the smaller circle's radius differs from the larger one by a factor of one-half.
In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle.
In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.
In arithmetic geometry, the Bombieri–Lang conjecture is an unsolved problem conjectured by Enrico Bombieri and Serge Lang about the Zariski density of the set of rational points of an algebraic variety of general type.
Great-circle navigation or orthodromic navigation is the practice of navigating a vessel along a great circle. Such routes yield the shortest distance between two points on the globe.
In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S1
a and S1
b. It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1
a and S1
b each exists in its own independent embedding space R2
a and R2
b, the resulting product space will be R4 rather than R3. The historically popular view that the Cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.
The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.
In algebraic geometry, the sinusoidal spirals are a family of curves defined by the equation in polar coordinates
In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin, which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.
In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,