In physics and astronomy, Euler's three-body problem is to solve for the motion of a particle that is acted upon by the gravitational field of two other point masses that are fixed in space. It is a particular version of the three-body problem. This version of it is exactly solvable, and yields an approximate solution for particles moving in the gravitational fields of prolate and oblate spheroids. This problem is named after Leonhard Euler, who discussed it in memoirs published in 1760. Important extensions and analyses to the three body problem were contributed subsequently by Joseph-Louis Lagrange, Joseph Liouville, Pierre-Simon Laplace, Carl Gustav Jacob Jacobi, Urbain Le Verrier, William Rowan Hamilton, Henri Poincaré and George David Birkhoff, among others. [1] The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [2] For convenience, the problem may also be solved by numerical methods, such as Runge–Kutta integration of the equations of motion. The total energy of the moving particle is conserved, but its linear and angular momentum are not, since the two fixed centers can apply a net force and torque. Nevertheless, the particle has a second conserved quantity that corresponds to the angular momentum or to the Laplace–Runge–Lenz vector as limiting cases.
Euler's problem also covers the case when the particle is acted upon by other inverse-square central forces, such as the electrostatic interaction described by Coulomb's law. The classical solutions of the Euler problem have been used to study chemical bonding, using a semiclassical approximation of the energy levels of a single electron moving in the field of two atomic nuclei, such as the diatomic ion HeH2+. This was first done by Wolfgang Pauli in 1921 in his doctoral dissertation under Arnold Sommerfeld, a study of the first ion of molecular hydrogen, namely the hydrogen molecular ion H2+. [3] These energy levels can be calculated with reasonable accuracy using the Einstein–Brillouin–Keller method, which is also the basis of the Bohr model of atomic hydrogen. [4] [5] More recently, as explained further in the quantum-mechanical version, analytical solutions to the eigenvalues (energies) have been obtained: these are a generalization of the Lambert W function.
Various generalizations of Euler's problem are known; these generalizations add linear and inverse cubic forces and up to five centers of force. Special cases of these generalized problems include Darboux's problem [6] and Velde's problem. [7]
Euler's three-body problem is to describe the motion of a particle under the influence of two centers that attract the particle with central forces that decrease with distance as an inverse-square law, such as Newtonian gravity or Coulomb's law. Examples of Euler's problem include an electron moving in the electric field of two nuclei, such as the hydrogen molecule-ion H+2. The strength of the two inverse-square forces need not be equal; for illustration, the two nuclei may have different charges, as in the molecular ion HeH2+.
In Euler's three-body problem we assume that the two centres of attraction are stationary. This is not strictly true in a case like H+2, but the protons experience much less acceleration than the electron. However, the Euler three-body problem does not apply to a planet moving in the gravitational field of two stars, because in that case at least one of the stars experiences acceleration similar to that experienced by the planet.
This problem was first considered by Leonhard Euler, who showed that it had an exact solution in 1760. [8] Joseph Louis Lagrange solved a generalized problem in which the centers exert both linear and inverse-square forces. [9] Carl Gustav Jacob Jacobi showed that the rotation of the particle about the axis of the two fixed centers could be separated out, reducing the general three-dimensional problem to the planar problem. [10]
In 2008, Diarmuid Ó Mathúna published a book entitled "Integrable Systems in Celestial Mechanics". In this book, he gives closed form solutions for both the planar two fixed centers problem and the three dimensional problem. [11]
The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion. The potential energy is given by
where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively. The total energy equals sum of this potential energy with the particle's kinetic energy
where and are the particle's mass and linear momentum, respectively.
The particle's linear and angular momentum are not conserved in Euler's problem, since the two centers of force act like external forces upon the particle, which may yield a net force and torque on the particle. Nevertheless, Euler's problem has a second constant of motion
where is the separation of the two centers of force, and are the angles of the lines connecting the particle to the centers of force, with respect to the line connecting the centers. This second constant of motion was identified by E. T. Whittaker in his work on analytical mechanics, [12] and generalized to dimensions by Coulson and Joseph in 1967. [13] In the Coulson–Joseph form, the constant of motion is written
where denotes the momentum component along the axis on which the attracting centers are located. [note 1] This constant of motion corresponds to the total angular momentum squared in the limit when the two centers of force converge to a single point (), and proportional to the Laplace–Runge–Lenz vector in the limit when one of the centers goes to infinity ( while remains finite).
A special case of the quantum mechanical three-body problem is the hydrogen molecule ion, H+
2. Two of the three bodies are nuclei and the third is a fast moving electron. The two nuclei are 1800 times heavier than the electron and thus modeled as fixed centers. It is well known that the Schrödinger wave equation is separable in prolate spheroidal coordinates and can be decoupled into two ordinary differential equations coupled by the energy eigenvalue and a separation constant. [14] However, solutions required series expansions from basis sets. Nonetheless, through experimental mathematics, it was found that the energy eigenvalue was mathematically a generalization of the Lambert W function (see Lambert W function and references therein for more details). The hydrogen molecular ion in the case of clamped nuclei can be completely worked out within a Computer algebra system. The fact that its solution is an implicit function is revealing in itself. One of the successes of theoretical physics is not simply a matter that it is amenable to a mathematical treatment but that the algebraic equations involved can be symbolically manipulated until an analytical solution, preferably a closed form solution, is isolated. This type of solution for a special case of the three-body problem shows us the possibilities of what is possible as an analytical solution for the quantum three-body and many-body problem.
An exhaustive analysis of the soluble generalizations of Euler's three-body problem was carried out by Adam Hiltebeitel in 1911. The simplest generalization of Euler's three-body problem is to add a third center of force midway between the original two centers, that exerts only a linear Hooke force. The next generalization is to augment the inverse-square force laws with a force that increases linearly with distance. The final set of generalizations is to add two fixed centers of force at positions that are imaginary numbers, with forces that are both linear and inverse-square laws, together with a force parallel to the axis of imaginary centers and varying as the inverse cube of the distance to that axis.
The solution to the original Euler problem is an approximate solution for the motion of a particle in the gravitational field of a prolate body, i.e., a sphere that has been elongated in one direction, such as a cigar shape. The corresponding approximate solution for a particle moving in the field of an oblate spheroid (a sphere squashed in one direction) is obtained by making the positions of the two centers of force into imaginary numbers. The oblate spheroid solution is astronomically more important, since most planets, stars and galaxies are approximately oblate spheroids; prolate spheroids are very rare.
The analogue of the oblate case in general relativity is a Kerr black hole. [15] The geodesics around this object are known to be integrable, owing to the existence of a fourth constant of motion (in addition to energy, angular momentum, and the magnitude of four-momentum), known as the Carter constant. Euler's oblate three body problem and a Kerr black hole share the same mass moments, and this is most apparent if the metric for the latter is written in Kerr–Schild coordinates.
The analogue of the oblate case augmented with a linear Hooke term is a Kerr–de Sitter black hole. As in Hooke's law, the cosmological constant term depends linearly on distance from the origin, and the Kerr–de Sitter spacetime also admits a Carter-type constant quadratic in the momenta. [16]
In the original Euler problem, the two centers of force acting on the particle are assumed to be fixed in space; let these centers be located along the x-axis at ±a. The particle is likewise assumed to be confined to a fixed plane containing the two centers of force. The potential energy of the particle in the field of these centers is given by
where the proportionality constants μ1 and μ2 may be positive or negative. The two centers of attraction can be considered as the foci of a set of ellipses. If either center were absent, the particle would move on one of these ellipses, as a solution of the Kepler problem. Therefore, according to Bonnet's theorem, the same ellipses are the solutions for the Euler problem.
Introducing elliptic coordinates,
the potential energy can be written as
and the kinetic energy as
This is a Liouville dynamical system if ξ and η are taken as φ1 and φ2, respectively; thus, the function Y equals
and the function W equals
Using the general solution for a Liouville dynamical system, [17] one obtains
Introducing a parameter u by the formula
gives the parametric solution
Since these are elliptic integrals, the coordinates ξ and η can be expressed as elliptic functions of u.
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.
In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.
In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In celestial mechanics, Jacobi's integral is the only known conserved quantity for the circular restricted three-body problem. Unlike in the two-body problem, the energy and momentum of each the system bodies comprising the system are not conserved separately, and a general analytical solution is not possible. With the gravitational force being conservative, the total energy (hamiltonian), the linear moment and the angular momentum of an isolated three-body system are conserved.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
Tisserand's criterion is used to determine whether or not an observed orbiting body, such as a comet or an asteroid, is the same as a previously observed orbiting body.
In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.
In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.
Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system in the perpendicular -direction. Hence, the coordinate surfaces are prisms of confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.
Prolate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the focal axis of the ellipse, i.e., the symmetry axis on which the foci are located. Rotation about the other axis produces oblate spheroidal coordinates. Prolate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two smallest principal axes are equal in length.
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.
In classical mechanics, a Liouville dynamical system is an exactly solvable dynamical system in which the kinetic energy T and potential energy V can be expressed in terms of the s generalized coordinates q as follows:
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.
A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.
In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.