Euphonix

Last updated
Euphonix inc.
TypeDigital audio console Manufacturer
Industry Audio
Founded1988
Headquarters
Mountain View, CA
,
United States
ProductsLarge-format digital audio consoles, media controllers, and peripherals
Websitewww.euphonix.com

Euphonix was a professional audio company located in Mountain View, California, United States. Euphonix produced the first successful line of large digitally controlled analog audio mixing consoles in the late 1980s and has since moved on to all-digital systems. In 2010, it was acquired by Avid.

Contents

History

Founding through IPO

The Euphonix approach to using digital logic to control multiple analog signal chains stems from original ideas by Scott Silfvast. By day employed at Stanford Research Systems (SRS), by night he developed the preliminary concepts for what would become Euphonix's first product, the Crescendo. Mechanical designer Adam Reif, also an SRS employee, joined Scott in 1988 to start Euphonix in a garage in Palo Alto behind Scott's residence. At the same time, younger brother Rob Silfvast designed the Crescendo's 4-band parametric equalizer, one of its hallmark technologies, as his senior project at the University of Arizona. Shortly thereafter, Andrew Kalman (who had also worked at SRS with Scott and Adam) and his Stanford University roommate Russ Kadota joined the team to develop the firmware and software, respectively, for the Crescendo.

Initially, Euphonix was privately financed. Many early investors were the friends and families of the employees. As payroll and burn rate grew, private investing was secured. Industry veterans were hired as the company outgrew the garage and moved into a larger building under the same roof as Fry's Electronics in Palo Alto, California.

The Euphonix name

While still at SRS Scott considered various names for the future company, and was particularly partial to the word "euphonic" meaning "of pleasing sound". Eventually the name "Euphonix" was adopted. In 2004 Euphonix prevailed in a trademark dispute with Euphonic Audio, Inc over its trademark "Euphonix".

IPO

Euphonix went public on the NASDAQ (EUPH) in 1995. Like many other Silicon Valley companies its stock declined over the next few years and it was subsequently delisted.

Today

Euphonix customer Yello's Dieter Meier eventually acquired a controlling interest in the company and then took it private. In April 2010, Euphonix was acquired by Avid. It continues today as a premier supplier of audio electronics to a variety of industries.

Impact on the Recording Industry

Euphonix's entry into the professional audio market brought with it technology that significantly improved the working methods and economics of producing music and audio-for-film/TV. Euphonix's all-new designs won many industry awards. System integration was always an important aspect of the Euphonix product lineup.

Mixing consoles

The Crescendo Digitally Controlled Analog Audio Mixing Console

The Crescendo's architecture was highly unconventional for its time. A system comprised a Mix Controller (roughly the size of a kitchen table), the (analog) Audio Mainframe, a single multi-pair control cable between them, the Support Computer (with color monitor) connected to the Mix Controller via RS-232, and an external patch bay with up to 8 Elco multi-pair cables to the Audio Mainframe. With the exception of the talkback microphone in the Mix Controller, all audio passed in and out of the Audio Mainframe.

The Mix Controller

The Mix Controller was a collection of a Master and one or more I/O modules held in a custom frame. The modules could be arranged in any order in the frame. Each I/O module serviced four channels of audio. Each channel included a stereo LED bar graph meter, an output section, two microphone preamps, four auxiliary bus controls and two independent stereo faders per channel via 8 rotary potentiometers, 2 linear faders and 15 pushbutton switches.

There was no audio signal in an I/O module—rather, each I/O module had a single 4 MHz Z80 microprocessor that was responsible for converting user input (switches, knobs, faders) on four channels to control signals for the audio tower, and for returning sample level information for display on the meters and overload information for clipping indicators. The Master module (also powered by a single 4 MHz Z80) handled the master faders, the talkback system, additional meters, etc. and also included a jog wheel and dot-matrix alphanumeric display for configuring the system. Since most controls (e.g. the changing of the gain of a selected EQ) could be performed with the jog wheel and alphanumeric display and were shown in real time on the Support Computer's display, a mix engineer could do most of his/her work from a central location at the Mix Controller while remaining in the audio "sweet spot" for monitoring purposes, etc. This was in stark contrast to the conventional mixing consoles of the time, where a particular EQ had to be adjusted via the associated knobs in that particular channel strip, which might be located a considerable distance from the sweet spot. A third Z80-based processor board—the MPU—resided inside the Master module and was responsible for system booting and initialization, system management, inter-module communication and communication with an external PC.

A modular, multi-processor-based approach was required in order to meet one of the Crescendo's initial goals—complete reconfiguration of the entire console (regardless of size) in an SMPTE frame, i.e. in 1/30s. This was achieved by having a single processor dedicated every four I/O channels, independent of the size of the console. All of the processors in the I/O and Master modules ran in parallel and communicated with the MPU via a shared memory scheme. The MPU module controlled access to the shared memory via a bus-address-based time sharing scheme with handshaking. Each I/O and Master module used the same basic memory paging architecture—the lower 32KB were mapped to a 2KB boot EPROM and a 32KB SRAM, and the upper 32KB could be mapped under local control to one of eight 32KB SRAMs. SRAM pages 0 through 6 were located in the module itself, but the 32KB SRAM for page 7 (the so-called Bulletin Board RAM) was located remotely in the MPU module. The system's Z80 address and data busses ran the length of the console's internal bus, which could be in excess of 9 feet (3 m) long in larger configurations. Address and data line buffers in each I/O and Master module were of course required for such a long bus. The memory architecture of the MPU module differed slightly from the I/O and Master modules by utilizing EPROMS in pages 1 through 6 to store the firmware for each of the three module types. RAM pages 1 through 6 in the Master and I/O modules were ultimately used for runtime automation. Though the clock signal was shared across multiple modules, each module ran independently and unsynchronized, only to re-synchronize at the end of each SMPTE frame. The Crescendo was coded entirely in Z80 assembly language, utilizing nearly all of the 64KB of program memory space available to each.

A typical (e.g. 24-channel) Crescendo Mix Controller was approximately 44" deep, 56" wide and 10" thick (need exact sizes), not counting its legs. The switching power supplies for the console (a 56-fader console had over 5,000 LEDs!) were housed within the console itself.

The Audio Mainframe

The Audio Mainframe was a small-refrigerator-sized tower containing all of the system's audio-controlling devices. Analog audio passed into each module in the Audio Mainframe, was processed in the analog domain, and then passed back out as analog audio. Most of the digital control in the analog processing chain was done with multiplying Digital-to-Analog converters (MDACs) employed as variable gain / variable resistance elements, with analog switches, and with relays. The parametric equalizer used a state-variable filter topology implemented with MDACs and accurately modeled in the Laplace domain (aka "S domain"), resulting in the first on-screen frequency response curve, displayed in real time as parameters were changed, for a mixing console. Designer Rob Silfvast studied under William Kerwin and Lawrence Huelsman (both credited with inventing the state variable filter) at the University of Arizona.

Components used in the audio signal path included common logic still available today, as well as high-performance audio chips from companies like PMI, SSM, Analog Devices, Burr-Brown, National Semiconductor, Maxim Integrated Products, and others. An Audio Mainframe was populated with one Master audio module and up to 28 I/O audio modules. The Mix Controller's Master module controlled the Master audio module, and each of the Mix Controller's I/O modules controlled four I/O audio modules. Communication between the Mix Controller and the Audio Mainframe was via a 1 Mbit/s link for each module in the Mix Controller. Since the communications link between the Mix Controller and the Audio Mainframe was strictly a digital control interface without any audio signals, the Audio Mainframe could be positioned a large distance from the Mix Controller. This was very helpful from an acoustic standpoint, as the fans required to cool the Audio Mainframe were noticeably loud. Additionally, since the circuitry in the audio modules could be arranged completely independently of the constraints imposed by a conventional mixer's control surface, the Audio Module was able to achieve some of the best (analog) audio specifications ever seen in this type of product. The Audio Mainframe consumed around 2.5 kW in operation from its dedicated linear power supply.

Evolution

The first Crescendo system was delivered to Poolside Studios (now Outpost Studios ) in San Francisco in 1990. The Crescendo morphed into the CSII, and eventually into the CS2000 and CS3000. Along the way, it gained a faster (10 Mbit/s) interface to the support computer via the Z180-based APU module, became fully automated, acquired flat-panel displays and motorized faders, increased in size up to 102 channels via two audio mainframes and a larger Mix Controller frame, underwent many cosmetic and packaging improvements, and was expanded with external modules (e.g. the Cube and ES108 dynamics processors).

Users

Euphonix's analog consoles quickly found favor amongst musicians, composers, TV stations, post-production houses, opera houses, and other venues throughout the world. Notable early adopters are the film composers Hans Zimmer, Harris Jayaraj, Vidyasagar and A. R. Rahman.

End of Life

Starting in 1999, the Crescendo/CSII/CS2000/CS3000 line was gradually phased out and replaced by Euphonix's System 5 all-digital console. Several hundred Crescendo/CSII/CS2000/CS3000 consoles are still in use today.

The System 5 All-Digital Mixing Console

System 5 is a high performance digital audio mixing system specifically designed for audio post-production and music applications.

System 5 has gone through a major evolutionary redesign including new surface modules, new DSP SuperCore, and the new EuCon Hybrid Option for adding DAW control from the System 5 surface.

S5 Fusion

The S5 Fusion is a derivation of the larger and scalable System 5 platform. It is, in most technical respects, identical to the larger System 5 console and shares all of the basic hardware components of the platform. The main differences being; the Fusion offers limited expandability of the DSP core and is marketed in a narrower range of configurations, being targeted at the smaller scale console market segment. It is notable for the inclusion of the Hybrid EuCon Digital Audio Workstation control protocol functionality as standard. Hybrid EuCon DAW control is offered as a cost option on the larger System 5 console and its inclusion in the base system is the rationale behind the marketing term 'Fusion', the 'S5' part of the product name is derived from 'System 5'. The S5 Fusion featured the significant cosmetic difference from its larger sibling being offered in a black finish where the System 5 was only available in silver/grey.

The Max Air

MC Pro

System 5-MC

Features Expandable DSP SuperCore can accommodate over 450 audio channels, each fully resourced with EQ, dynamics, Aux sends, panning, and routing Modular control surface with up to 112 channel strips, each with 8 touch- sensitive encoders and a motorized 100mm fader per channel Accelerate your mixing with SnapShot Recall, customizable Layouts, and Total Automation Get quick access to multiformat sources and groups with user-definable Spill zones Customizable modular I/O to match your needs View metering, routing, panning, and EQ/dynamics visual feedback on high-resolution TFT displays Mix multichannel audio in up to 7.1 surround Control multiple DAWs with the EUCON Hybrid option

The Artist Series

Related Research Articles

A music sequencer is a device or application software that can record, edit, or play back music, by handling note and performance information in several forms, typically CV/Gate, MIDI, or Open Sound Control (OSC), and possibly audio and automation data for DAWs and plug-ins.

Mixing console Device used for audio mixing

A mixing console or mixing desk is an electronic device for mixing audio signals, used in sound recording and reproduction and sound reinforcement systems. Inputs to the console include microphones, signals from electric or electronic instruments, or recorded sounds. Mixers may control analog or digital signals. The modified signals are summed to produce the combined output signals, which can then be broadcast, amplified through a sound reinforcement system or recorded.

TI MSP430

The MSP430 is a mixed-signal microcontroller family from Texas Instruments, first introduced on 14 February 1992. Built around a 16-bit CPU, the MSP430 is designed for low cost and, specifically, low power consumption embedded applications.

Pro Tools Digital audio workstation

Pro Tools is a digital audio workstation (DAW) developed and released by Avid Technology for Microsoft Windows and macOS. It is used for music creation and production, sound for picture and, more generally, sound recording, editing, and mastering processes.

DECstation DEC brand of computers

The DECstation was a brand of computers used by DEC, and refers to three distinct lines of computer systems—the first released in 1978 as a word processing system, and the latter two both released in 1989. These comprised a range of computer workstations based on the MIPS architecture and a range of PC compatibles. The MIPS-based workstations ran ULTRIX, a DEC-proprietary version of UNIX, and early releases of OSF/1.

Lighting control console

A lighting control console is an electronic device used in theatrical lighting design to control multiple stage lights at once. They are used throughout the entertainment industry and are normally placed at the front of house (FOH) position or in a control booth.

Blackfin

The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.

A variable-gain (VGA) or voltage-controlled amplifier (VCA) is an electronic amplifier that varies its gain depending on a control voltage.

VAXstation

The VAXstation is a discontinued family of workstation computers developed and manufactured by Digital Equipment Corporation using processors implementing the VAX instruction set architecture. VAXstation systems were typically shipped with either the OpenVMS or ULTRIX operating systems. Many members of the VAXstation family had corresponding MicroVAX variants, which primarily differ by the lack of graphics hardware.

Digital mixing console Electronic device used to manipulate audio input signals using digital signal processing

In professional audio, a digital mixing console (DMC) is a type of mixing console used to combine, route, and change the dynamics, equalization and other properties of multiple audio input signals, using digital signal processing rather than analog circuitry. The digital audio samples, which is the internal representation of the analog inputs, are summed to what is known as a master channel to produce a combined output. A professional digital mixing console is a dedicated desk or control surface produced exclusively for the task and is typically more robust in terms of user control, processing power and quality of audio effects. However, a computer can also perform the same function since it can mimic its interface, input and output.

Yamaha M7CL Mixing console

The Yamaha M7CL is a digital mixer that was manufactured by Yamaha Pro Audio. Two models with onboard analog input exist: the M7CL-32 and M7CL-48. These models have 40 - and 56 -input channels respectively, counting mono channels. Mixes, masters, groups, DCAs and individual channels can then be routed to an output via any number of the board's 16 configurable output XLR ports. The eight faders of the master control section can control multiple functions by way of "layers" in the same manner as the Yamaha PM5D. The board features Yamaha's "Selected Channel" technology, and Centralogic, unique to the M7CL. It can be augmented with more inputs or outputs via expansion cards, and can be fitted with third-party cards such as ones made by Aviom (A-Net), AuviTran (EtherSound), Audinate, AudioService (MADI), Dan Dugan (automixer), Riedel Communications (RockNet), Waves Audio, and Optocore. The M7CL-48ES recently joined the line-up with built-in EtherSound for digital networking using EtherSound stage boxes.

Soundcraft is a British designer and importer of mixing consoles and other professional audio equipment. It is a subsidiary of Harman International Industries, which is owned by South Korean company Samsung Electronics. It was founded by sound engineer Phil Dudderidge and electronics designer Graham Blyth in 1973.

VENUE is a brand of live sound digital mixing consoles introduced by Digidesign in February 2005. The family now includes 5 different consoles and a number of ways they can be configured. They can all be connected to Pro Tools, the audio editing software also created by Avid/Digidesign, to provide recording and 'Virtual Soundcheck' facilities. One of the system's key marketing points is its use of the same AAX DSP/TDM plugins as Pro Tools, an industry standard digital audio workstation (DAW). This is designed to enable the sounds recorded by the artist in the studio to be easily recreated on stage, and to allow for greater flexibility in signal processing without heavy and mechanical-shock-sensitive racks of external processors. There is also a PC-based offline editor for creation and editing of show files, although there is no audio processing in the editor.

The Firefly was a shared memory asymmetric multiprocessor workstation, developed by the Systems Research Center, a research organization within Digital Equipment Corporation. The first version built contained up to seven MicroVAX 78032 microprocessors. The cache from each of the microprocessors kept a consistent view of the same main memory using a cache coherency algorithm, the Firefly protocol. The second version of the Firefly used faster CVAX 78034 microprocessors. It was later introduced as a product by DEC as VAX-3520/3540 and called 'Firefox'.

A Virtual Mixer is a software application that runs on a computer or other digital audio system. Providing the same functionality of a digital or analog mixing console, a virtual mixer takes the audio outputs of many separate tracks or live sources and combines them into a pair of stereo outputs or other routed subgroups for auxiliary outputs.

The DEC 7000 AXP and DEC 10000 AXP are a series of high-end multiprocessor server computers developed and manufactured by Digital Equipment Corporation, introduced on 10 November 1992. These systems formed part of the first generation of systems based on the 64-bit Alpha AXP architecture and at the time of introduction, ran Digital's OpenVMS AXP operating system, with DEC OSF/1 AXP available in March 1993. They were designed in parallel with the VAX 7000 and VAX 10000 minicomputers, and are identical except for the processor module(s) and supported bus interfaces. A field upgrade from a VAX 7000/10000 to a DEC 7000/10000 AXP was possible by means of swapping the processor boards.

Harrison Mixbus is a digital audio workstation (DAW) available for Microsoft Windows, Mac OS X and Linux operating systems and version 1 was released in 2009.

System 573

The System 573 is a series of arcade system boards by Konami based on the original PlayStation. The hardware was used primarily for Konami's Bemani series of music video game arcades, most commonly the Dance Dance Revolution series introduced in 1998. The System 573 is available in two variants with analog and digital I/O boards, dubbed the Bemani System 573 Analog and Bemani System 573 Digital respectively, along with a third variant called the System 573 Satellite Terminal which allows for up to 8 cabinets to be networked to a central one.

Matrix mixer Audio device that routes multiple audio signals

A matrix mixer is an audio electronics device that routes multiple input audio signals to multiple outputs. It usually employs level controls such as potentiometers to determine how much of each input is going to each output, and it can incorporate simple on/off assignment buttons. The number of individual controls is at least the number of inputs multiplied by the number of outputs.

Webduino

The BPI Bit is an ESP32 with Xtensa 32bit LX6 single/dual-core processor based embedded system