This article contains promotional content .(February 2023) |
Headquarters | Rome, Italy |
---|---|
Membership | 13 involved countries |
Website | http://www.emso-eu.org |
European Multidisciplinary Seafloor and water-column Observatory (EMSO) is a large-scale European distributed Research Infrastructure [1] for ocean observation, enabling real-time interactive long term monitoring of ocean processes. EMSO allows study of the interaction between the geosphere, the biosphere, the hydrosphere, and the lithosphere; including natural hazards, climate change, and marine ecosystems. EMSO nodes have been deployed at key sites in European seas, starting from the Arctic, through the Atlantic and Mediterranean, to the Black Sea.
EMSO is a consortium of partners sharing a common strategic framework of scientific facilities (data, instruments, computing and storage capacity). EMSO is a European Research Infrastructure Consortium (ERIC), a specific legal form created for pan-European large-scale research infrastructures by the European Commission that facilitates the establishment and operation of Research Infrastructures with European interest.. EMSO is one of the environmental RIs [2] on the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI). The ESRFI Roadmap identifies RIs of pan-European importance that corresponds to the long term needs of European research communities.
The different EMSO nodes are designed to address topics of regional importance: the biodiversity of mid ocean hot vents in the Azores region, the rapidly changing environmental conditions affecting the geosphere and biosphere of the Arctic, the deep-water ventilation in the eastern Mediterranean, the active seismicity and the associated geo-hazards of the Anatolian region. [3] EMSO infrastructure has the capacity to observe the deep and open ocean, below, at and above the seafloor, at the European scale, utilizing both stand-alone observing systems, and nodes connected to shore stations through high throughput fibre optic cable. [4] The mission of EMSO is to unite these regional observatories into a common research infrastructure, to implement more generic sensor packages to collect synoptic data series on oceanographic features of more than regional interest, to bring these data together in a uniform format accessible to the general public, and to ensure maintenance of this research infrastructure over a longer time-span than easily maintained by national funding programs. [5]
The global oceans cover 70% of the surface of the globe, consist of 95% of the living space, and are the core momentum of our planet's physical, chemical, and biological cycles. As underlined in recent policy documents such as the Galway Statement [6] and Belmont Challenge [7] , in order to understand the changes predicted in the coming decades, EMSO aims to have a continuous presence in the oceans; and in order to understand both the slow moving and rapid catastrophes, EMSO seeks to have continuous real-time data from which to learn and to derive adaptation and early warning systems. Ocean observatories provide power and communications to allow a sustained interactive presence in the ocean. This challenge can only be addressed as part of an international cooperation between USA, [8] Canada, Japan, Australia, Europe and other interested countries where EMSO takes a role for the European side.
The deployment of the EMSO distributed observatory nodes is allowing researchers to get useful data in order to understand the behaviour of the oceans and their impact on human society. In particular, EMSO collects data concerning the following main scientific fields: [9]
The Preparatory Phase of EMSO was funded by the European Seventh Framework Programme (FP7), involving 12 countries of the European area (Italy, France, Germany, Ireland, Spain, Sweden, Greece, UK, Norway, Portugal, Turkey, the Netherlands), and Romania (through GeoEcoMar), that has been involved as external interested country from 2010. The Preparatory Phase prepared the foundation for the adoption of the ERIC (European Research Infrastructure Consortium), that is the legal entity in charge of coordinating and facilitating access to these nodes of open ocean fixed point observatory distributed infrastructure.
EMSO ERIC is the central point of contact for observatory initiatives in other parts of the world to set up and promote cooperation in this field. EMSO ERIC integrates research, training, and information dissemination activities for ocean observatory nodes in Europe and enables scientists and other stakeholders to make efficient use of the EMSO distributed infrastructure around Europe.
Project | Full name | Year | Funding | Lead | Details | Outcome |
---|---|---|---|---|---|---|
ABEL | Abyssal BEnthic Laboratory | 1990-1993 | FP3-MAST2 | Tecnomare | M. Berta et al. Abyssal BEnthic Laboratory (ABEL): a novel approach for long-term investigation at abyssal depths, Journal of Marine Systems, Volume 6, Issue 3, 1995, Pages 211-225, ISSN 0924-7963 | Feasibility and financial study aimed at identifying the scientific requirements, possible technological solutions and opportunities for the development of an Abyssal BEnthic Laboratory |
DESIBEL | Deep-Sea Intervention on future BEnthic Laboratory | 1990-1993 | FP3-MAST2 | IFREMER | https://cordis.europa.eu/project/id/MAS20082 "New methods for deep sea intervention on benthic laboratories". DESIBEL project. Final results, comparisons of concepts and at sea validation V. Rigaud et al. IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259) | Feasibility study aimed at investigating methods for deployment and intervention on future benthic stations |
GEOSTAR | GEophysical and Oceanographic STation for Abyssal Research | 1995-1998 | FP4-MAST3 | INGV | https://cordis.europa.eu/project/id/MAS3950007 | Realization of a multidisciplinary observatory for deep-sea application |
ALIPOR | Autonomous Lander Instrument Packages for Oceanographic Research | 1996-1999 | FP4-MAST3 | University of Aberdeen | https://cordis.europa.eu/project/id/MAS3950010 | Autonomous landers that can conduct experiments and gather data on the sea floor have the potential to revolutionise oceanographic research. By using a number of landers, the spatial and temporal coverage of a single ship can be increased by orders of magnitude. Joint experiments in the Porcupine zone with FP4 – MAST3 BENGAL project. |
GEOSTAR 2 | GEophysical and Oceanographic STation for Abyssal Research 2nd phase: Deep-sea Scientific Mission | 1999-2001 | FP4-MAST3 | INGV | https://archimer.ifremer.fr/doc/00061/17268/14778.pdf | Deep-sea mission of the observatory realized in the GEOSTAR project. Underwater volcano Massili north of Sicily. |
ASSEM | Array of sensors for long term seabed monitoring of geohazards | 2002-2004 | FP5-EESD | IFREMER | https://cordis.europa.eu/project/id/EVK3-CT-2001-00051 | The project developed an underwater network for shallow waters (600 m w.d.) able to communicate in two ways with the land through a surface buoy acoustically linked with the underwater systems. Experiment in Gulf of Corinth and Norwegian Fjord. |
ORION-GEOSTAR-3 | Ocean Research by Integrated Observation Networks | 2002-2005 | FP5-EESD | INGV | https://cordis.europa.eu/project/id/EVK3-CT-2001-00067 | The project represented the passage from a single node to a constellation, and realized a deep-water network able to communicate in underwater via acoustics with a main node and this main to communicate always via acoustics with a relay surface buoy linked to land via radio and satellite. ORION realized one of the first example of a near-real-time deep-sea network. Experiment in Gulf of Corinth. |
ESONET-CA | European Seafloor Observatory Network-Concerted Action | 2002-2004 | FP5 | University of Aberdeen | http://www.abdn.ac.uk/ecosystem/esonet http://www.esonet-noe.org/Associated-projects/ESONET-CA | Assessment of European capability in ocean observatories Site identification, technological issues. |
EXOCET/D | EXtreme ecosystem studies in the deep OCEan:Technological Developments | 2004-2006 | FP6-SUSTDEV | IFREMER | https://cordis.europa.eu/project/id/505342 | Technological development of a specific instrumentation allowing the study of natural or accidentally perturbed ecosystems found in the deep ocean. Experiment in MoMar Azores site. |
ESONIM | European Seafloor Observatories Implementation Model | 2004-2007 | FP6 | Marine Institute | http://www.esonet-noe.org/Associated-projects/ESONIM | Case study on Porcupine Abyssal Plain site to investigate legal and financial aspects and develop a Business Plan. |
NEAREST | Integrated Observations from NEAR shore SourcES of Tsunamis: toward an early warning system | 2006-2010 | FP6 | CNR | http://nearest.bo.ismar.cnr.it/documentation | NEAREST activities included land investigations in areas of Portugal affected in the past by run-up of tsunamis, inundation maps, oceanographic campaigns for defining specific and reliable velocity models to be used in earthquake localizations, 1-year OBS campaign to detect seismic activity. In particular, INGV was in charge of the deposition for almost 2 years in near-source area in the Gulf of Cadiz at over 3200 m w.d. of a GEOSTAR-type multidisciplinary observatory, specifically enhanced with a prototypal system of Tsunami Early Warning. |
ESONET-NoE | European Seafloor Observatory Network-Network of Excellence | 2007-2011 | FP6-SUSTDEV | IFREMER | https://cordis.europa.eu/project/id/36851 | Integration of the scientific/technological “Observatory Science” Community. Demonstration missions in Haakon Mosby mud volcano, Arctic Ocean Fram Strait, Porcupine Abyssal Plain, Momar Azores, West Ionian Sea, Gulf of Cadiz, Marmara Sea, Ligurian Sea. |
EuroSITES | Integration and enhancement of key existing European deep-ocean observatories | 2008-2011 | FP7 - Environment | NERC | Ehttps://cordis.europa.eu/project/id/202955/ | Water-column observatories in Europe, related to OceanSites. Building agreed methods to collect time series of basic variables and common data protocols for real time and delayed mode observation. Complete ocean observatory data management system. |
ENVRI | Common Operations of Environmental Research Infrastructures | 2011-2014 | FP7 | Amsterdam University | https://cordis.europa.eu/project/id/283465 | The project aimed at pursuing solutions and defining guidelines for the commonalities of ESFRI environmental research infrastructures. |
EMSO-PP | European Multidisciplinary Seafloor and water-column Observatory-Preparatory Phase | 2008-2012 | FP7-Infrastructures | INGV | https://cordis.europa.eu/project/id/211816 | Development of the management structure: legal, governance and financial issues. |
HYPOX | In-situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and land-locked water bodies | 2009-2012 | FP7 | Max Planck Institute for Marine Microbiology | https://cordis.europa.eu/project/id/226213/reporting | The project had as the main goal to increase in-situ monitoring systems for oxygen depletion in hypoxic ecosystems of coastal and open seas, and land-locked water bodies (such as lagoons) to better understand the global change effects on this phenomenon. |
MARSITE | New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite | 2012-2015 | FP7-Supersites | KOERI-Kandilli Observatory | https://cordis.europa.eu/project/id/308417/reporting www.marsite.eu | The project included several research groups with different scientific background (from seismology to engineering, from geophysics to geochemistry) in multidisciplinary monitoring activities in the Marmara Sea (considered a Supersite for the seismology). |
Fix | Fixed Point Open Ocean Observatories | 2013-2017 | FP7-Infrastructures | NERC | https://cordis.europa.eu/project/id/312463 | Enhanced access to broad range of data and infrastructure Coordination among observatories |
COOPEUS | Connecting Research Infrastructures. Strengthening the cooperation between the US and the EU in the field of environmental research infrastructures | 2012-2015 | FP7 | MARUM-Bremen University | https://cordis.europa.eu/project/id/312118/reporting | The project aimed at implementing a sustainable cooperation between Europe and USA in the field of the environmental infrastructures, putting into relation homologous infrastructures to develop common policies, interoperability and synergies. |
EMSODEV | EMSO implementation and operation: DEVelopment of instrument module | 2015-2019 | H2020-EU.1.4.1.1. | INGV | http://www.emsodev.eu/deliverables.html | EMSODEV is focused on development of EGIMs (EMSO Generic Instrument Modules) to ensure increased coordination, integration, interoperability and standardization across sites and disciplines, and of a DMP (Data Management Platform) to guarantee the data accessibility to the scientific users and stakeholders. |
ENVRI-PLUS | supporting environmental research with integrated solutions | 2015-2019 | H2020 | Helsinki University, then ICOS ERIC | https://www.envriplus.eu/ | ENVRI-PLUS was a cluster of research infrastructures (RIs) for Environmental and Earth System sciences, built around ESFRI roadmap and associating leading e-infrastructures and Integrating Activities together with technical specialist partners. It included a marine domain where EMSO played a key role. |
COOP+ (or COOP_PLUS) | Cooperation of Research Infrastructures to address global challenges in the environmental field | 2016-2019 | H2020 | Cordoba University | http://www.coop-plus.eu/documents | The general goal was to strengthen the links and coordination of the European RIs related to Marine Science (EMSO), Arctic and Atmospheric Research (EISCAT), Carbon Observation (ICOS) and Biodiversity (LifeWatch) with international counterparts (NEON, TERN, AMISR/SRI, CGSM, OOI, INPA/LBA, IMOS, ONC, AMERIFLUX, etc.) and to leverage international scientific cooperation and data exchange with non-EU countries. |
DANUBIUS-PP | PREPARATORY PHASE FOR THE PAN-EUROPEAN RESEARCH INFRASTRUCTURE DANUBIUS–RI “THE INTERNATIONAL CENTRE FOR ADVANCED STUDIES ON RIVER-SEA SYSTEMS | 2016-2019 | H2020-EU.1.4.1.1. | INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU GEOLOGIE SI GEOECOLOGIE MARINA-GEOECOMAR | https://danubius-pp.eu/ | DANUBIUS-PP is a three-year project to raise DANUBIUS-RI (International Centre for Advanced Studies on River-Sea Systems) to the legal, financial and technical maturity required for successful implementation and development. DANUBIUS-RI is a pan-European distributed research infrastructure (RI) building on existing expertise to support interdisciplinary research on river-sea (RS) systems, spanning the environmental, social and economic sciences. |
EMSO-Link | Implementation of the Strategy to ensure the EMSO ERIC Long-term Sustainability | 2017-2020 | H2020-EU.1.4.1.1 | EMSO ERIC | https://cordis.europa.eu/project/id/731036/reporting | Underpins the long-term sustainability of EMSO. Structure developed. SLAs signed. Services defined. |
ENVRI-FAIR | ENVironmental Research Infrastructures building Fair services Accessible for society, Innovation and Research | 2019-2023 | H2020-INFRAEOSC | FZJ - IAGOS | https://envri.eu/home-envri-fair/ | The overarching goal is that at the end of the project, all participating Research Infrastructures have built a set of FAIR data services which enhances the efficiency and productivity of researchers, supports innovation, enables data- and knowledge-based decisions and connects the ENVRI Cluster to the EOSC |
ENRIITC | European Network of Research Infrastructures & IndusTry for Collaboration | 2020-2023 | H2020-EU.1.4.2.1 | EUROPEAN SPALLATION SOURCE ERIC | https://enriitc.eu/ | It will build a permanent network of Industrial Liaison and Contact Officers (ILOs and ICOs) to maximise their engagement and boost the research infrastructures-industry partnerships. |
EurofleetsPlus | An alliance of European marine research infrastructure to meet the evolving needs of the research and industrial communities. | 2019-2023 | H2020-EU.1.4.1.2. | MARINE INSTITUTE | https://www.eurofleets.eu/ | EurofleetsPlus will facilitate open access to an integrated and advanced research vessel fleet, designed to meet the evolving and challenging needs of the user community. European and international researchers from academia and industry will be able to apply for several access programmes, through a single-entry system. |
Jeffrey C. Wynn is a research geophysicist with the United States Geological Survey (USGS). He is currently based in the Cascades Volcano Observatory in Vancouver, WA, one of the five USGS volcano observatories in the United States .
The Global Earth Observation System of Systems (GEOSS) was built by the Group on Earth Observations (GEO) on the basis of a 10-Year Implementation Plan running from 2005 to 2015. GEOSS seeks to connect the producers of environmental data and decision-support tools with the end users of these products, with the aim of enhancing the relevance of Earth observations to global issues. GEOSS aims to produce a global public infrastructure that generates comprehensive, near-real-time environmental data, information and analyses for a wide range of users. The Secretariat Director of Geoss is Barbara Ryan.
Marine geology or geological oceanography is the study of the history and structure of the ocean floor. It involves geophysical, geochemical, sedimentological and paleontological investigations of the ocean floor and coastal zone. Marine geology has strong ties to geophysics and to physical oceanography.
The National Oceanography Centre Southampton (NOCS) is a centre for research, teaching, and technology development in Ocean and Earth science. NOCS was created in 1995, jointly between the University of Southampton and the UK Natural Environment Research Council and is located within the port of Southampton at a purpose-built dockside campus with modern facilities. In 2010 the university and NERC components demerged, and the NERC-managed component became the National Oceanography Centre. The two components of NOCS continue close collaboration through the jointly run Graduate School, shared research facilities and laboratories, complementary research groups, and many joint research grants and publications. The university component “Ocean and Earth Science, National Oceanography Centre Southampton” (OES) is part of the Faculty of Environmental and Life Sciences, (FELS). It was ranked 46th in the world for Earth and Marine Sciences by the QS World University Rankings in 2019.
The National Oceanography Centre (NOC) is a marine science research and technology institution based across two sites, one in Southampton and one in Liverpool, England. It is the UK’s largest institution for integrated sea level science, coastal and deep ocean research and technology development. The Centre was established to promote co-operation with institutions across the UK marine science community, to better address key issues including sea level change, the ocean's role in climate change, computer simulation of the ocean's behaviour, and the long term monitoring and future of the Arctic Circle.
The International Permafrost Association (IPA), founded in 1983, is an international professional body formed to foster the dissemination of knowledge concerning permafrost and to promote cooperation among individuals and national or international organisations engaged in scientific investigation and engineering work related to permafrost and seasonally frozen ground. The IPA became an Affiliated Organisation of the International Union of Geological Sciences in July 1989.
The Cubic Kilometre Neutrino Telescope, or KM3NeT, is a European research infrastructure located at the bottom of the Mediterranean Sea. It hosts the next-generation neutrino telescope with water Cherenkov detectors.
The Ocean Observatories Initiative (OOI) is a National Science Foundation (NSF) Major Research Facility composed of a network of science-driven ocean observing platforms and sensors in the Atlantic and Pacific Oceans. This networked infrastructure measures physical, chemical, geological, and biological variables from the seafloor to the sea surface and overlying atmosphere, providing an integrated data collection system on coastal, regional and global scales. OOI's goal is to deliver data and data products for a 25-year-plus time period, enabling a better understanding of ocean environments and critical ocean issues.
Robert D. Conrad (T-AGOR-3) was a Robert D. Conrad-class oceanographic research ship that operated from 1962 to 1989. The ship, while Navy owned, was operated as the R/V Robert D. Conrad by the Lamont–Doherty Earth Observatory of Columbia University from delivery to inactivation. The ship provided valuable ocean-bottom, particularly seismic profile, information and underwater test data to the U.S. Navy and other U.S. agencies.
The following are considered ocean essential climate variables (ECVs) by the Ocean Observations Panel for Climate (OOPC) that are currently feasible with current observational systems.
The National Oceanographic Partnership Program (NOPP) facilitates interagency and multi-sectoral partnerships to address federal ocean science and technology research priorities. Through this collaboration, federal agencies can leverage resources to invest in priorities that fall between agency missions or are too large for any single agency to support. In its first 20 years, NOPP invested more than $468 million to support over 200 research and education projects with over 600 partners. A comparable amount of in-kind support has been committed by the research and education community.
Hotspot Ecosystem Research and Man's Impact On European Seas (HERMIONE) is an international multidisciplinary project, started in April 2009, that studies deep-sea ecosystems. HERMIONE scientists study the distribution of hotspot ecosystems, how they function and how they interconnect, partially in the context of how these ecosystems are being affected by climate change and impacted by humans through overfishing, resource extraction, seabed installations and pollution. Major aims of the project are to understand how humans are affecting the deep-sea environment and to provide policy makers with accurate scientific information, enabling effective management strategies to protect deep sea ecosystems. The HERMIONE project is funded by the European Commission's Seventh Framework Programme, and is the successor to the HERMES project, which concluded in March 2009.
The European Consortium for Ocean Research Drilling (ECORD) is a consortium of 14 European countries and Canada that was formed in 2003 to join the Integrated Ocean Drilling Program (IODP) as a single member. ECORD is now part of the International Ocean Discovery Program, which addresses crucial questions in Earth, Ocean, Environmental and Life sciences based on drill cores, borehole imaging, observatory data, and related geophysical imaging obtained from beneath the ocean floor using specialized ocean-going drilling and research vessels and platforms. As a contributing member of IODP, ECORD is entitled to berths on every IODP expedition.
A cabled observatory is a seabed oceanographic research platform connected to land by cables that provide power and communication. Observatories are outfitted with a multitude of scientific instruments that can collect many kinds of data from the seafloor and water column. By removing the limitations of undersea power sources and sonar or RF communications, cabled observatories allow persistent study of underwater phenomena. Data from these instruments is relayed to a land station and data networks, such as Ocean Networks Canada, in real time.
Common Language Resources and Technology Infrastructure is a European Research Infrastructure Consortium founded in 2012. It comprises national consortia in and outside the European Union, consisting of institutes such as universities, research centres, libraries and public archives. The goal of the consortium is providing access to digital language data collections, to digital tools, and training material for researchers to work with the language resources.
Ocean Networks Canada is a world-leading research and ocean observing facility hosted and owned by the University of Victoria, and managed by the not-for profit ONC Society. ONC operates unparalleled observatories in the deep ocean and coastal waters of Canada’s three coasts–the Arctic, the Pacific and the Atlantic–gathering biological, chemical, geological and physical data to drive solutions for science, industry and society. ONC operates the NEPTUNE and VENUS cabled ocean observatories in the northeast Pacific Ocean and the Salish Sea. Additionally, Ocean Networks Canada operates smaller community-based observatories offshore from Cambridge Bay, Nunavut., Campbell River, Kitamaat Village and Digby Island. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods. As with other ocean observatories such as ESONET, Ocean Observatories Initiative, MACHO and DONET, scientific instruments connected to Ocean Networks Canada are operated remotely and provide continuous streams of freely available data to researchers and the public. Over 200 gigabytes of data are collected every day.
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) Regional Scale Nodes (RSN) component is an electro-optically cabled underwater observatory that directly connects to the global Internet. It is the largest cable-linked seabed observatory in the world, and also the first of its kind in the United States.
The National Institute for Research and Development of Marine Geology and Geoecology – GeoEcoMar is a Romanian institute of geology and geo-ecology founded in 1993. It was initially named Romanian Centre for Marine Geology and Geo-ecology. Its administrative and scientific headquarters is in the capital of Romania, Bucharest; but the operational center, with the research vessels and marine infrastructure, is in Constanța, an important harbor on the Black Sea. The first director of the institute was the academician Nicolae Panin, now retired and a personal adviser of the current director, Gheorghe Oaie.
A European Research Infrastructure Consortium (ERIC) is a full juridical person and a corporation under European Union law. With a membership of at least one European Union member state and two EU member or associated states, it has legal personality and full legal capacity recognized in all Member States. Currently there are 25 ERICs established.
A fixed-point ocean observatory is an ocean observing autonomous system of automatic sensors and samplers that continuously gathers data from deep sea, water column and lower atmosphere, and transmits the data to shore in real or near real-time.