Exercise-associated muscle cramps (EAMC) are defined as cramping (painful muscle spasms) during or immediately following exercise. [1] [2] [3] Muscle cramps during exercise are very common, even in elite athletes. EAMC are a common condition that occurs during or after exercise, often during endurance events such as a triathlon or marathon. [1] [3] Although EAMC are extremely common among athletes, the cause is still not fully understood because muscle cramping can occur as a result of many underlying conditions. Elite athletes experience cramping due to paces at higher intensities. [2] [3] The cause of exercise-associated muscle cramps is hypothesized to be due to altered neuromuscular control, dehydration, or electrolyte depletion. [1] [2] [3]
It is widely believed that excessive sweating due to strenuous exercise can lead to muscle cramps. Deficiency of sodium and other electrolytes may lead to contracted interstitial fluid compartments, which may exacerbate the muscle cramping. According to this theory, the increased blood plasma osmolality from sweating sodium losses causes a fluid shift from the interstitial space to the intervascular space, which causes the interstitial fluid compartment to deform and contributes to muscle hyperexcitability and risk of spontaneous muscle activity. [1] [2]
The second hypothesis is altered neuromuscular control. In this hypothesis, it is suggested that cramping is due to altered neuromuscular activity. The proposed underlying cause of the altered neuromuscular control is due to fatigue. [2] There are several disturbances, at various levels of the central and peripheral nervous system, and the skeletal muscle that contribute to cramping. These disturbances can be described by a series of several key events. First and foremost, repetitive muscle exercise can lead to the development of fatigue due to one or more of the following: inadequate conditioning, hot and or humid environments, increased intensity, increased duration, and decreased supply of energy. Muscle fatigue itself causes increased excitatory afferent activity within the muscle spindles and decreased inhibitory afferent activity within the Golgi tendon. The coupling of these events leads to altered neuromuscular control from the spinal cord. A cascade of events follow the altered neuromuscular control; this includes increased alpha-motor neuron activity in the spinal cord, which overloads the lower motor neurons, and increased muscle cell membrane activity. [2] Thus, the resultant of this cascade is a muscle cramp.[ citation needed ]
Medication has not been found to help reduce or prevent muscle cramping. To prevent or treat, athletes are recommended to stretch, stop movement and rest, massaging the area that is cramping, or drink fluids. Stretching helps to calm down spindles by lengthening the muscle fibers and increase firing duration to slow down the firing rate of the muscle. [1] Recommended fluids during cramping are water or fluids that are high in electrolytes to replenish the system with sodium. [2] [3]
An electrolyte is a medium containing ions that is electrically conducting through the movement of ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dissolving, the substance separates into cations and anions, which disperse uniformly through the solvent. Solid-state electrolytes also exist. In medicine, the term electrolyte refers to the substance that is dissolved.
A motor neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuron – upper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.
In physiology, dehydration is a lack of total body water, with an accompanying disruption of metabolic processes. It occurs when free water loss exceeds free water intake, usually due to exercise, disease, or high environmental temperature. Mild dehydration can also be caused by immersion diuresis, which may increase risk of decompression sickness in divers.
Exercise physiology is the physiology of physical exercise. It is one of the allied health professions that involves the study of the acute responses and chronic adaptations to exercise. Exercise Physiologists are the highest qualified exercise professionals and utilise education, lifestyle intervention and specific forms of exercise to rehabilitate and manage acute and chronic injuries and conditions.
A cramp is a sudden, involuntary muscle contraction or overshortening; while generally temporary and non-damaging, they can cause significant pain and a paralysis-like immobility of the affected muscle. Muscle cramps are common and are often associated with pregnancy, physical exercise or overexertion, age, or may be a sign of a motor neuron disorder. Cramps may occur in a skeletal muscle or smooth muscle. Skeletal muscle cramps may be caused by muscle fatigue or a lack of electrolytes such as sodium, potassium, or magnesium. Some skeletal muscle cramps do not have a known cause. Cramps of smooth muscle may be due to menstruation or gastroenteritis. Motor neuron disorders, metabolic disorders, some medications, and haemodialysis may also cause muscle cramps.
Muscle spindles are stretch receptors within the body of a skeletal muscle that primarily detect changes in the length of the muscle. They convey length information to the central nervous system via afferent nerve fibers. This information can be processed by the brain as proprioception. The responses of muscle spindles to changes in length also play an important role in regulating the contraction of muscles, for example, by activating motor neurons via the stretch reflex to resist muscle stretch.
Electrolyte imbalance, or water-electrolyte imbalance, is an abnormality in the concentration of electrolytes in the body. Electrolytes play a vital role in maintaining homeostasis in the body. They help to regulate heart and neurological function, fluid balance, oxygen delivery, acid–base balance and much more. Electrolyte imbalances can develop by consuming too little or too much electrolyte as well as excreting too little or too much electrolyte.
Hyperchloremia is an electrolyte disturbance in which there is an elevated level of chloride ions in the blood. The normal serum range for chloride is 96 to 106 mEq/L, therefore chloride levels at or above 110 mEq/L usually indicate kidney dysfunction as it is a regulator of chloride concentration. As of now there are no specific symptoms of hyperchloremia; however, it can be influenced by multiple abnormalities that cause a loss of electrolyte-free fluid, loss of hypotonic fluid, or increased administration of sodium chloride. These abnormalities are caused by diarrhea, vomiting, increased sodium chloride intake, renal dysfunction, diuretic use, and diabetes. Hyperchloremia should not be mistaken for hyperchloremic metabolic acidosis as hyperchloremic metabolic acidosis is characterized by two major changes: a decrease in blood pH and bicarbonate levels, as well as an increase in blood chloride levels. Instead those with hyperchloremic metabolic acidosis are usually predisposed to hyperchloremia.
A charley horse is a painful involuntary cramp in the legs and/or foot, lasting anywhere from a few seconds to a day. The term formerly referred more commonly to bruising of the quadriceps muscle of the anterior or lateral thigh, or contusion of the femur, that commonly results in a haematoma and sometimes several weeks of pain and disability. In this latter sense, such an injury is known as dead leg.
End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers have a large, saucer-like appearance. When an action potential reaches the axon terminal of a motor neuron, vesicles carrying neurotransmitters are exocytosed and the contents are released into the neuromuscular junction. These neurotransmitters bind to receptors on the postsynaptic membrane and lead to its depolarization. In the absence of an action potential, acetylcholine vesicles spontaneously leak into the neuromuscular junction and cause very small depolarizations in the postsynaptic membrane. This small response (~0.4mV) is called a miniature end plate potential (MEPP) and is generated by one acetylcholine-containing vesicle. It represents the smallest possible depolarization which can be induced in a muscle.
A gamma motor neuron, also called gamma motoneuron, or fusimotor neuron, is a type of lower motor neuron that takes part in the process of muscle contraction, and represents about 30% of (Aγ) fibers going to the muscle. Like alpha motor neurons, their cell bodies are located in the anterior grey column of the spinal cord. They receive input from the reticular formation of the pons in the brainstem. Their axons are smaller than those of the alpha motor neurons, with a diameter of only 5 μm. Unlike the alpha motor neurons, gamma motor neurons do not directly adjust the lengthening or shortening of muscles. However, their role is important in keeping muscle spindles taut, thereby allowing the continued firing of alpha neurons, leading to muscle contraction. These neurons also play a role in adjusting the sensitivity of muscle spindles.
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes in the various body fluids are kept within healthy ranges. The core principle of fluid balance is that the amount of water lost from the body must equal the amount of water taken in; for example, in humans, the output must equal the input. Euvolemia is the state of normal body fluid volume, including blood volume, interstitial fluid volume, and intracellular fluid volume; hypovolemia and hypervolemia are imbalances. Water is necessary for all life on Earth. Humans can survive for 4 to 6 weeks without food but only for a few days without water.
The stretch reflex, or more accurately "muscle stretch reflex", is a muscle contraction in response to stretching within the muscle. The reflex functions to maintain the muscle at a constant length. The term deep tendon reflex is often wrongfully used by many health workers and students to refer to this reflex. "Tendons have little to do with the response, other than being responsible for mechanically transmitting the sudden stretch from the reflex hammer to the muscle spindle. In addition, some muscles with stretch reflexes have no tendons ".
Alpha (α) motor neurons (also called alpha motoneurons), are large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate extrafusal muscle fibers of skeletal muscle and are directly responsible for initiating their contraction. Alpha motor neurons are distinct from gamma motor neurons, which innervate intrafusal muscle fibers of muscle spindles.
Acute muscle soreness (AMS) is the pain felt in muscles during and immediately, up to 24 hours, after strenuous physical exercise. The pain appears within a minute of contracting the muscle and it will disappear within two or three minutes or up to several hours after relaxing it.
Sports nutrition is the study and practice of nutrition and diet with regards to improving anyone's athletic performance. Nutrition is an important part of many sports training regimens, being popular in strength sports and endurance sports. Sports nutrition focuses its studies on the type, as well as the quantity of fluids and food taken by an athlete. In addition, it deals with the consumption of nutrients such as vitamins, minerals, supplements and organic substances that include carbohydrates, proteins and fats.
Heat cramps, a type of heat illness, are muscle spasms that result from loss of large amount of salt and water through exercise. Heat cramps are associated with cramping in the abdomen, arms and calves. This can be caused by inadequate consumption of fluids or electrolytes. Heavy sweating causes heat cramps, especially when the water is replaced without also replacing salt or potassium.
The Golgi tendon reflex (also called inverse stretch reflex, autogenic inhibition, tendon reflex) is an inhibitory effect on the muscle resulting from the muscle tension stimulating Golgi tendon organs (GTO) of the muscle, and hence it is self-induced. The reflex arc is a negative feedback mechanism preventing too much tension on the muscle and tendon. When the tension is extreme, the inhibition can be so great it overcomes the excitatory effects on the muscle's alpha motoneurons causing the muscle to suddenly relax. This reflex is also called the inverse myotatic reflex, because it is the inverse of the stretch reflex.
Uwe Windhorst is a German neuroscientist, systems scientist and cyberneticist, who was born in Bremen, Germany in 1946. Windhorst became known for his pioneer research in the use of diverse methods of correlation, spectral analysis as well as nonlinear systems analysis to describe the dynamic properties of signal transmission through small neuronal networks assessed in experimental animals.
A spinal interneuron, found in the spinal cord, relays signals between (afferent) sensory neurons, and (efferent) motor neurons. Different classes of spinal interneurons are involved in the process of sensory-motor integration. Most interneurons are found in the grey column, a region of grey matter in the spinal cord.