In mathematics, specifically in the fields of model theory and complex geometry, the Existential Closedness conjecture is a statement predicting when systems of equations involving addition, multiplication, and certain transcendental functions have solutions in the complex numbers. It can be seen as a conjectural generalisation of the Fundamental Theorem of Algebra and Hilbert's Nullstellensatz which are about solvability of (systems of) polynomial equations in the complex numbers.
The conjecture was first proposed by Boris Zilber in his work on the model theory of complex exponentiation. [1] [2] Zilber's conjecture is known as Exponential Closedness or Exponential Algebraic Closedness and covers the case of Existential Closedness when the transcendental function involved is the complex exponential function. It was later generalised to exponential functions of semiabelian varieties, [3] and analogous conjectures were proposed for modular functions [4] and Shimura varieties. [5]
Informally, given a complex transcendental function , the Existential Closedness conjecture for states that systems of equations involving field operations and always have solutions in unless the existence of a solution would obviously contradict the (hypothetical) algebraic and transcendental properties of . Two precise cases are considered below.
In the case of the exponential function , the algebraic property referred to above is given by the identity . Its transcendental properties are assumed to be captured by Schanuel's conjecture. The latter is a long-standing open problem in transcendental number theory and implies in particular that and are algebraically independent over the rationals.
Some systems of equations cannot have solutions because of these properties. For instance, the system has no solutions, and similarly for any non-zero polynomial with rational coefficients the system has no solution if we assume and are algebraically independent. [6] The latter is an example of an overdetermined system, where we have more equations than variables. Exponential Closedness states that a system of equations, which is not overdetermined and which cannot be reduced to an overdetermined system by using the above-mentioned algebraic property of , always has solutions in the complex numbers. Formally, every free and rotund system of exponential equations has a solution. Freeness and rotundity are technical conditions capturing the notion of a non-overdetermined system.
In the modular setting the transcendental function under consideration is the -function. Its algebraic properties are governed by the transformation rules under the action of – the group of rational matrices with positive determinant – on the upper half-plane. The transcendental properties of are captured by the Modular Schanuel Conjecture. [4]
Modular Existential Closedness states that every free and broad system of equations involving field operations and the -function has a complex solution, where freeness and broadness play the role of freeness and rotundity mentioned above.
Existential Closedness can be seen as a dual statement to Schanuel's conjecture or its analogue in the appropriate setting. Schanuel implies that certain systems of equations cannot have solutions (or solutions which are independent in some sense, e.g. linearly independent) as the above example of exponential equations demonstrates. Then Existential Closedness can be interpreted roughly as stating that solutions exists unless their existence would contradict Schanuel's conjecture. This is the approach used by Zilber. [2] His axiomatisation of pseudo-exponentiation prominently features Schanuel and a strong version of Existential Closedness which is indeed dual to Schanuel. This strong version predicts existence of generic solutions and follows from the combination of the Existential Closedness, Schanuel, and Zilber-Pink conjectures. [7] However, Existential Closedness is a natural conjecture in its own right and makes sense without necessarily assuming Schanuel's conjecture (or any other conjecture). In fact, Schanuel's conjecture is considered out of reach [8] while Existential Closedness seems to be much more tractable as evidenced by recent developments, some of which are discussed below.
The Existential Closedness conjecture is open in full generality both in the exponential and modular settings, but many special cases and weak versions have been proven. For instance, the conjecture (in both settings) has been proven assuming dominant projection: any system of polynomial equations in the variables and (or ), which does not imply any algebraic relation between , has complex solutions. [9] [6] [10] Another important special case is the solvability of systems of raising to powers type. [11] Differential/functional analogues of the Existential Closedness conjecture have also been proven. [12]
The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquity in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using only the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.
In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though Knuth's up arrow notation and the left-exponent xb are common.
In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.
In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers.
Transcendental number theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.
In mathematics, the exponential of pieπ, also called Gelfond's constant, is the real number e raised to the power π.
In mathematics, specifically transcendental number theory, Schanuel's conjecture is a conjecture about the transcendence degree of certain field extensions of the rational numbers , which would establish the transcendence of a large class of numbers, for which this is currently unknown. It is due to Stephen Schanuel and was published by Serge Lang in 1966.
In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the confluent hypergeometric equation introduced by Whittaker (1903) to make the formulas involving the solutions more symmetric. More generally, Jacquet (1966, 1967) introduced Whittaker functions of reductive groups over local fields, where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL2(R).
In mathematics, specifically algebraic geometry, a period or algebraic period is a complex number that can be expressed as an integral of an algebraic function over an algebraic domain. The periods are a class of numbers which includes, alongside the algebraic numbers, many well known mathematical constants such as the number π. Sums and products of periods remain periods, such that the periods form a ring.
In mathematics, exponential polynomials are functions on fields, rings, or abelian groups that take the form of polynomials in a variable and an exponential function.
In mathematics, specifically the field of transcendental number theory, the four exponentials conjecture is a conjecture which, given the right conditions on the exponents, would guarantee the transcendence of at least one of four exponentials. The conjecture, along with two related, stronger conjectures, is at the top of a hierarchy of conjectures and theorems concerning the arithmetic nature of a certain number of values of the exponential function.
In model theory, Tarski's exponential function problem asks whether the theory of the real numbers together with the exponential function is decidable. Alfred Tarski had previously shown that the theory of the real numbers is decidable.
In mathematics, an exponential field is a field with a further unary operation that is a homomorphism from the field's additive group to its multiplicative group. This generalizes the usual idea of exponentiation on the real numbers, where the base is a chosen positive real number.
In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. Nearly fifteen years earlier, Alexander Gelfond had considered the problem with only integer coefficients to be of "extraordinarily great significance". The result, proved by Alan Baker, subsumed many earlier results in transcendental number theory. Baker used this to prove the transcendence of many numbers, to derive effective bounds for the solutions of some Diophantine equations, and to solve the class number problem of finding all imaginary quadratic fields with class number 1.
In mathematics, and particularly complex dynamics, the escaping set of an entire function ƒ consists of all points that tend to infinity under the repeated application of ƒ. That is, a complex number belongs to the escaping set if and only if the sequence defined by converges to infinity as gets large. The escaping set of is denoted by .
Boris Zilber is a Soviet-British mathematician who works in mathematical logic, specifically model theory. He is a emeritus professor of mathematical logic at the University of Oxford.
In mathematics, the Zilber–Pink conjecture is a far-reaching generalisation of many famous Diophantine conjectures and statements, such as André–Oort, Manin–Mumford, and Mordell–Lang. For algebraic tori and semiabelian varieties it was proposed by Boris Zilber and independently by Enrico Bombieri, David Masser, Umberto Zannier in the early 2000's. For semiabelian varieties the conjecture implies the Mordell–Lang and Manin–Mumford conjectures. Richard Pink proposed (again independently) a more general conjecture for Shimura varieties which also implies the André–Oort conjecture. In the case of algebraic tori, Zilber called it the Conjecture on Intersection with Tori (CIT). The general version is now known as the Zilber–Pink conjecture. It states roughly that atypical or unlikely intersections of an algebraic variety with certain special varieties are accounted for by finitely many special varieties.