Expandable graphite

Last updated

Expandable graphite (also known as exfoliated graphite) is produced from the naturally occurring mineral graphite. [1] The layered structure of graphite allows molecules to be intercalated in between the graphite layers. Through incorporation of acids, usually sulfuric acid graphite can be converted into expandable graphite. [2]

Contents

Characteristics

If expandable graphite is heated, the graphite flakes will expand to a multiple of their starting volume. The main products in the market have a starting temperature in the range of 200 °C. The expanded flakes have a “worm-like” appearance and are generally several millimeters long. [2]

Physical characteristics
Carbon content85%-99%
Expansion rate30–400 cm3/g
Particle size80% < 75 μm – 80% > 500 μm
Starting temperature140 °C-230 °C

Production

To produce expandable graphite, natural graphite flakes are treated in a bath of acid and oxidizing agent.Usually used oxidizing agents are hydrogen peroxide, potassium permanganate or chromic acid. Concentrated sulphuric acid or nitric acid are usually used as the compound to be incorporated, with the reaction taking place at temperatures of 30 °C to 130 °C for up to four hours. After the reaction time, the flakes are washed with water and then dried. [3] Starting temperature and expansion rate depend on the production conditions and particle size of the graphite. temperature and expansion rate are depending on the degree of fineness of the graphite used.

Applications

Flame retardant

One of the main applications of expandable graphite is as a flame retardant. When exposed to heat, expandable graphite expands and forms an intumescent layer on the material surface. This slows down the spread of fire and counteracts the most dangerous consequences of fire for humans, the formation of toxic gases and smoke. [4]

Graphite foil

By compressing expanded graphite, foils can be produced from pure graphite. These are mainly used as thermally and chemically highly resistant seals in chemical plant construction or as heat spreaders.

Expandable graphite for metallurgy

Expandable graphite is also used in metallurgy to cover melts and moulds. The material serves here as an oxidation protection and insulator.

Expandable graphite for the chemical industry

Expandable graphite is included in the chemical processes for paints and varnishes.

Related Research Articles

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Graphite</span> Allotrope of carbon, mineral, substance

Graphite is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on a large scale for uses in pencils, lubricants, and electrodes. Under high pressures and temperatures it converts to diamond. It is a good conductor of both heat and electricity.

<span class="mw-page-title-main">Nitric acid</span> Highly corrosive mineral acid

Nitric acid is the inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.

<span class="mw-page-title-main">Polyurethane</span> Polymer composed of a chain of organic units joined by carbamate (urethane) links

Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

<i>R</i>-value (insulation) Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

<span class="mw-page-title-main">Smokeless powder</span> Type of propellant

Smokeless powder is a type of propellant used in firearms and artillery that produces less smoke and less fouling when fired compared to black powder. Because of their similar use, both the original black powder formulation and the smokeless propellant which replaced it are commonly described as gunpowder. The combustion products of smokeless powder are mainly gaseous, compared to around 55% solid products for black powder. In addition, smokeless powder does not leave the thick, heavy fouling of hygroscopic material associated with black powder that causes rusting of the barrel.

<span class="mw-page-title-main">Fire triangle</span> Model for understanding the ingredients for fires

The fire triangle or combustion triangle is a simple model for understanding the necessary ingredients for most fires.

<span class="mw-page-title-main">Foam rubber</span> Rubber manufactured with a foaming agent

Foam rubber refers to rubber that has been manufactured with a foaming agent to create an air-filled matrix structure. Commercial foam rubbers are generally made of synthetic rubber, natural latex or polyurethane. Latex foam rubber, used in mattresses, is well known for its endurance. Polyurethane is a thermosetting polymer that comes from combination of Methyl di-isocyanate and polyethylene and some other chemical additives.

<span class="mw-page-title-main">Polyisocyanurate</span> Type of plastic typically used for thermal insulation

Polyisocyanurate, also referred to as PIR, polyiso, or ISO, is a thermoset plastic typically produced as a foam and used as rigid thermal insulation. The starting materials are similar to those used in polyurethane (PUR) except that the proportion of methylene diphenyl diisocyanate (MDI) is higher and a polyester-derived polyol is used in the reaction instead of a polyether polyol. The resulting chemical structure is significantly different, with the isocyanate groups on the MDI trimerising to form isocyanurate groups which the polyols link together, giving a complex polymeric structure.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

A blowing agent is a substance which is capable of producing a cellular structure via a foaming process in a variety of materials that undergo hardening or phase transition, such as polymers, plastics, and metals. They are typically applied when the blown material is in a liquid stage. The cellular structure in a matrix reduces density, increasing thermal and acoustic insulation, while increasing relative stiffness of the original polymer.

<span class="mw-page-title-main">Building insulation material</span> Insulation material

Building insulation materials are the building materials that form the thermal envelope of a building or otherwise reduce heat transfer.

Natural oil polyols, also known as NOPs or biopolyols, are polyols derived from vegetable oils by several different techniques. The primary use for these materials is in the production of polyurethanes. Most NOPs qualify as biobased products, as defined by the United States Secretary of Agriculture in the Farm Security and Rural Investment Act of 2002.

<span class="mw-page-title-main">Fire extinguisher</span> Active fire protection device

A fire extinguisher is a handheld active fire protection device usually filled with a dry or wet chemical used to extinguish or control small fires, often in emergencies. It is not intended for use on an out-of-control fire, such as one which has reached the ceiling, endangers the user, or otherwise requires the equipment, personnel, resources or expertise of a fire brigade. Typically, a fire extinguisher consists of a hand-held cylindrical pressure vessel containing an agent that can be discharged to extinguish a fire. Fire extinguishers manufactured with non-cylindrical pressure vessels also exist but are less common.

<span class="mw-page-title-main">Graphite oxide</span> Compound of carbon, oxygen, and hydrogen

Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

References

  1. Lu, Yan (2012-04-01). "Size Effect of Expandable Graphite". Advanced Materials Research. 499: 72–75. doi:10.4028/www.scientific.net/AMR.499.72. S2CID   137475092 . Retrieved 2020-08-11.
  2. 1 2 Vijay J. Bhagat: Behaviour of expandable graphite as a flameretardant in flexible polyurethane foam Presented at: Polyurethane Foam Association (PFA)Arlington, Virginia, USA, May 10, 2001
  3. Europäische Patentschrift EP 1 323 670 B1 from 8. Juli 2009
  4. Mineralischer Flammschutz mit Blähgraphit – Der hochwirksame und REACH-konforme Intumeszenzbildner Pressemitteilung Georg H. Luh GmbH.