In biology exponential integrate-and-fire models are compact and computationally efficient nonlinear spiking neuron models with one or two variables. The exponential integrate-and-fire model was first proposed as a one-dimensional model. [1] The most prominent two-dimensional examples are the adaptive exponential integrate-and-fire model [2] and the generalized exponential integrate-and-fire model. [3] Exponential integrate-and-fire models are widely used in the field of computational neuroscience and spiking neural networks because of (i) a solid grounding of the neuron model in the field of experimental neuroscience, (ii) computational efficiency in simulations and hardware implementations, and (iii) mathematical transparency.
The exponential integrate-and-fire model (EIF) is a biological neuron model, a simple modification of the classical leaky integrate-and-fire model describing how neurons produce action potentials. In the EIF, the threshold for spike initiation is replaced by a depolarizing non-linearity. The model was first introduced by Nicolas Fourcaud-Trocmé, David Hansel, Carl van Vreeswijk and Nicolas Brunel. [1] The exponential nonlinearity was later confirmed by Badel et al. [4] It is one of the prominent examples of a precise theoretical prediction in computational neuroscience that was later confirmed by experimental neuroscience.
In the exponential integrate-and-fire model, [1] spike generation is exponential, following the equation:
where is the membrane potential, is the intrinsic membrane potential threshold, is the membrane time constant, is the resting potential, and is the sharpness of action potential initiation, usually around 1 mV for cortical pyramidal neurons. [4] Once the membrane potential crosses , it diverges to infinity in finite time. [5] [4] In numerical simulation the integration is stopped if the membrane potential hits an arbitrary threshold (much larger than ) at which the membrane potential is reset to a value Vr . The voltage reset value Vr is one of the important parameters of the model.
Two important remarks: (i) The right-hand side of the above equation contains a nonlinearity that can be directly extracted from experimental data. [4] In this sense the exponential nonlinearity is not an arbitrary choice but directly supported by experimental evidence. (ii) Even though it is a nonlinear model, it is simple enough to calculate the firing rate for constant input, and the linear response to fluctuations, even in the presence of input noise. [6]
A didactive review of the exponential integrate-and-fire model (including fit to experimental data and relation to the Hodgkin-Huxley model) can be found in Chapter 5.2 of the textbook Neuronal Dynamics. [7]
The adaptive exponential integrate-and-fire neuron [2] (AdEx) is a two-dimensional spiking neuron model where the above exponential nonlinearity of the voltage equation is combined with an adaptation variable w
where w denotes an adaptation current with time scale . Important model parameters are the voltage reset value Vr, the intrinsic threshold , the time constants and as well as the coupling parameters a and b. The adaptive exponential integrate-and-fire model inherits the experimentally derived voltage nonlinearity [4] of the exponential integrate-and-fire model. But going beyond this model, it can also account for a variety of neuronal firing patterns in response to constant stimulation, including adaptation, bursting and initial bursting. [8]
The adaptive exponential integrate-and-fire model is remarkable for three aspects: (i) its simplicity since it contains only two coupled variables; (ii) its foundation in experimental data since the nonlinearity of the voltage equation is extracted from experiments; [4] and (iii) the broad spectrum of single-neuron firing patterns that can be described by an appropriate choice of AdEx model parameters. [8] In particular, the AdEx reproduces the following firing patterns in response to a step current input: neuronal adaptation, regular bursting, initial bursting, irregular firing, regular firing. [8]
A didactic review of the adaptive exponential integrate-and-fire model (including examples of single-neuron firing patterns) can be found in Chapter 6.1 of the textbook Neuronal Dynamics. [7]
The generalized exponential integrate-and-fire model [3] (GEM) is a two-dimensional spiking neuron model where the exponential nonlinearity of the voltage equation is combined with a subthreshold variable x
where b is a coupling parameter, is a voltage-dependent time constant, and is a saturating nonlinearity, similar to the gating variable m of the Hodgkin-Huxley model. The term in the first equation can be considered as a slow voltage-activated ion current. [3]
The GEM is remarkable for two aspects: (i) the nonlinearity of the voltage equation is extracted from experiments; [4] and (ii) the GEM is simple enough to enable a mathematical analysis of the stationary firing-rate and the linear response even in the presence of noisy input. [3]
A review of the computational properties of the GEM and its relation to other spiking neuron models can be found in. [9]
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.
The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time. The concept can be extended to the abstract mathematical notion of a dynamical system using an evolution parameter.
Spike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials. The STDP process partially explains the activity-dependent development of nervous systems, especially with regard to long-term potentiation and long-term depression.
In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics.
The Hodgkin–Huxley model, or conductance-based model, is a mathematical model that describes how action potentials in neurons are initiated and propagated. It is a set of nonlinear differential equations that approximates the electrical engineering characteristics of excitable cells such as neurons and muscle cells. It is a continuous-time dynamical system.
Biological neuron models, also known as spiking neuron models, are mathematical descriptions of the conduction of electrical signals in neurons. Neurons are electrically excitable cells within the nervous system, able to fire electric signals, called action potentials, across a neural network. These mathematical models describe the role of the biophysical and geometrical characteristics of neurons on the conduction of electrical activity.
The linear-nonlinear-Poisson (LNP) cascade model is a simplified functional model of neural spike responses. It has been successfully used to describe the response characteristics of neurons in early sensory pathways, especially the visual system. The LNP model is generally implicit when using reverse correlation or the spike-triggered average to characterize neural responses with white-noise stimuli.
In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.
Models of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
The Morris–Lecar model is a biological neuron model developed by Catherine Morris and Harold Lecar to reproduce the variety of oscillatory behavior in relation to Ca++ and K+ conductance in the muscle fiber of the giant barnacle. Morris–Lecar neurons exhibit both class I and class II neuron excitability.
The dynamical systems approach to neuroscience is a branch of mathematical biology that utilizes nonlinear dynamics to understand and model the nervous system and its functions. In a dynamical system, all possible states are expressed by a phase space. Such systems can experience bifurcation as a function of its bifurcation parameters and often exhibit chaos. Dynamical neuroscience describes the non-linear dynamics at many levels of the brain from single neural cells to cognitive processes, sleep states and the behavior of neurons in large-scale neuronal simulation.
The theta model, or Ermentrout–Kopell canonical model, is a biological neuron model originally developed to mathematically describe neurons in the animal Aplysia. The model is particularly well-suited to describe neural bursting, which is characterized by periodic transitions between rapid oscillations in the membrane potential followed by quiescence. This bursting behavior is often found in neurons responsible for controlling and maintaining steady rhythms such as breathing, swimming, and digesting. Of the three main classes of bursting neurons, the theta model describes parabolic bursting, which is characterized by a parabolic frequency curve during each burst.
A binding neuron (BN) is an abstract concept of processing of input impulses in a generic neuron based on their temporal coherence and the level of neuronal inhibition. Mathematically, the concept may be implemented by most neuronal models including the well-known leaky integrate-and-fire model. The BN concept originated in 1996 and 1998 papers by A. K. Vidybida,
The quadratic integrate and fire (QIF) model is a biological neuron model that describes action potentials in neurons. In contrast to physiologically accurate but computationally expensive neuron models like the Hodgkin–Huxley model, the QIF model seeks only to produce action potential-like patterns by ignoring the dynamics of transmembrane currents and ion channels. Thus, the QIF model is computationally efficient and has found ubiquitous use in computational neuroscience.
The Tempotron is a supervised synaptic learning algorithm which is applied when the information is encoded in spatiotemporal spiking patterns. This is an advancement of the perceptron which does not incorporate a spike timing framework.
In combustion, Frank-Kamenetskii theory explains the thermal explosion of a homogeneous mixture of reactants, kept inside a closed vessel with constant temperature walls. It is named after a Russian scientist David A. Frank-Kamenetskii, who along with Nikolay Semenov developed the theory in the 1930s.
Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle oscillators.
The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.
The spike response model (SRM) is a spiking neuron model in which spikes are generated by either a deterministic or a stochastic threshold process. In the SRM, the membrane voltage V is described as a linear sum of the postsynaptic potentials (PSPs) caused by spike arrivals to which the effects of refractoriness and adaptation are added. The threshold is either fixed or dynamic. In the latter case it increases after each spike. The SRM is flexible enough to account for a variety of neuronal firing pattern in response to step current input. The SRM has also been used in the theory of computation to quantify the capacity of spiking neural networks; and in the neurosciences to predict the subthreshold voltage and the firing times of cortical neurons during stimulation with a time-dependent current stimulation. The name Spike Response Model points to the property that the two important filters and of the model can be interpreted as the response of the membrane potential to an incoming spike (response kernel , the PSP) and to an outgoing spike (response kernel , also called refractory kernel). The SRM has been formulated in continuous time and in discrete time. The SRM can be viewed as a generalized linear model (GLM) or as an (integrated version of) a generalized integrate-and-fire model with adaptation.