Extended theories of gravity

Last updated

Extended theories of gravity are alternative theories of gravity developed from the starting points investigated first by Albert Einstein and Hilbert. These are theories describing gravity, which are metric theory, "a linear connection" or related affine theories, or metric-affine gravitation theory. Rather than trying to discover correct calculations for the matter side of the Einstein field equations (which include inflation, dark energy, dark matter, large-scale structure, and possibly quantum gravity), it is instead proposed to change the gravitational side of the equation. [1] [2] [3] [4]

Core concepts of RAQUAL such as a weak field limit that follows have been adopted under the name "extended gravity", by Hernández and Mendoza at the National Autonomous University of Mexico. [5] [6] This theory is an f(R) gravity theory, more properly an f(R,T) theory, derived from an action principle. This approach to solve the dark matter problem takes into account the Tully–Fisher relation and MOND. [7] This matches gravitational lensing observations without the need for dark matter. [8] There is some evidence that it could also explain the dark energy phenomena [9] and give a solution to the initial conditions problem. [10]

References

  1. Capozziello, S.; De Laurentis, M. (2011). "Extended Theories of Gravity". Physics Reports . 509 (4–5): 167–321. arXiv: 1108.6266 . Bibcode:2011PhR...509..167C. doi:10.1016/j.physrep.2011.09.003. S2CID   119296243.
  2. Capozziello, S.; Francaviglia, M. (2008). "Extended theories of gravity and their cosmological and astrophysical applications". General Relativity and Gravitation . 40 (2–3): 357–420. arXiv: 0706.1146 . Bibcode:2008GReGr..40..357C. doi:10.1007/s10714-007-0551-y. S2CID   119587409.
  3. Wands, D. (1994). "Extended gravity theories and the Einstein–Hilbert action". Classical and Quantum Gravity . 11 (1): 269–279. arXiv: gr-qc/9307034 . Bibcode:1994CQGra..11..269W. doi:10.1088/0264-9381/11/1/025. S2CID   15060182.
  4. Allemandi, G.; Capone, M.; Capozziello, S.; Francaviglia, M. (2006). "Conformal aspects of the Palatini approach in Extended Theories of Gravity". General Relativity and Gravitation . 38 (1): 33–60. arXiv: hep-th/0409198 . Bibcode:2006GReGr..38...33A. doi:10.1007/s10714-005-0208-7. S2CID   33278891.
  5. Mendoza, S.; Hernandez, X.; Hidalgo, J. C.; Bernal, T. (2011). "A natural approach to extended Newtonian gravity: Tests and predictions across astrophysical scales". Monthly Notices of the Royal Astronomical Society . 411 (1): 226–234. arXiv: 1006.5037 . Bibcode:2011MNRAS.411..226M. doi: 10.1111/j.1365-2966.2010.17685.x . S2CID   118640139.
  6. Hidalgo, J. C.; Mendoza, S.; Hernandez, X.; Bernal, T.; Jimenez, M. A.; Allen, C. (2012). "Non-relativistic Extended Gravity and its applications across different astrophysical scales". AIP Conference Proceedings . 1458: 427–430. arXiv: 1202.4189 . Bibcode:2012AIPC.1458..427H. doi:10.1063/1.4734451. S2CID   118566737.
  7. Capozziello, S.; De Laurentis, M. (2013). "Extended Gravity: State of the Art and Perspectives". In Rosquist, K.; Jantzen, R. T.; Ruffini, R. (eds.). Proceedings of the Thirteenth Marcel Grossman Meeting on General Relativity. World Scientific. arXiv: 1307.4523 . Bibcode:2013arXiv1307.4523C.
  8. Mendoza, S.; Bernal, T.; Hernandez, X.; Hidalgo, J. C.; Torres, L. A. (2013). "Gravitational lensing with f(χ)=χ3/2 gravity in accordance with astrophysical observations". Monthly Notices of the Royal Astronomical Society . 433 (3): 1802–1812. arXiv: 1208.6241 . Bibcode:2013MNRAS.433.1802M. doi: 10.1093/mnras/stt752 .
  9. Carranza, D. A.; Mendoza, S.; Torres, L. A. (2012). "A cosmological dust model with extended f(χ) gravity". European Physical Journal C . 73: 2282. arXiv: 1208.2502 . Bibcode:2013EPJC...73.2282C. doi:10.1140/epjc/s10052-013-2282-4. S2CID   118644910.
  10. Hernandez, X.; Jimenez, M. A. (2013). "A first linear cosmological structure formation scenario under extended gravity". arXiv: 1307.0777 [astro-ph.CO].

News