Exterior Gateway Protocol

Last updated

The Exterior Gateway Protocol (EGP) was a routing protocol used to connect different autonomous systems on the Internet from the mid-1980s until the mid-1990s, when it was replaced by Border Gateway Protocol (BGP).

Contents

History

EGP was developed by Bolt, Beranek and Newman in the early 1980s. It was first described in RFC 827 [1] and formally specified in RFC 904. [2]

RFC 1772 outlined a migration path from EGP to BGP. [3]

Related Research Articles

In computer network engineering, an Internet Standard is a normative specification of a technology or methodology applicable to the Internet. Internet Standards are created and published by the Internet Engineering Task Force (IETF). They allow interoperation of hardware and software from different sources which allows internets to function. As the Internet became global, Internet Standards became the lingua franca of worldwide communications.

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address. For example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

<span class="mw-page-title-main">IPv4</span> Fourth version of the Internet Protocol

Internet Protocol version 4 (IPv4) is the first version of the Internet Protocol (IP) as a standalone specification. It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.

A Request for Comments (RFC) is a publication in a series from the principal technical development and standards-setting bodies for the Internet, most prominently the Internet Engineering Task Force (IETF). An RFC is authored by individuals or groups of engineers and computer scientists in the form of a memorandum describing methods, behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems. It is submitted either for peer review or to convey new concepts, information, or, occasionally, engineering humor.

<span class="mw-page-title-main">Border Gateway Protocol</span> Protocol for communicating routing information on the Internet

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. BGP is classified as a path-vector routing protocol, and it makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

In the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers.

A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass; one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers using a distance-vector protocol exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information. Distance-vector routing protocols also require that a router inform its neighbours of network topology changes periodically.

The Bootstrap Protocol (BOOTP) is a computer networking protocol used in Internet Protocol networks to automatically assign an IP address to network devices from a configuration server. The BOOTP was originally defined in RFC 951 published in 1985.

An autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain, that presents a common and clearly defined routing policy to the Internet. Each AS is assigned an autonomous system number (ASN), for use in Border Gateway Protocol (BGP) routing. Autonomous System Numbers are assigned to Local Internet Registries (LIRs) and end-user organizations by their respective Regional Internet Registries (RIRs), which in turn receive blocks of ASNs for reassignment from the Internet Assigned Numbers Authority (IANA). The IANA also maintains a registry of ASNs which are reserved for private use.

<span class="mw-page-title-main">Anycast</span> Network addressing and routing methodology

Anycast is a network addressing and routing methodology in which a single IP address is shared by devices in multiple locations. Routers direct packets addressed to this destination to the location nearest the sender, using their normal decision-making algorithms, typically the lowest number of BGP network hops. Anycast routing is widely used by content delivery networks such as web and name servers, to bring their content closer to end users.

A path-vector routing protocol is a network routing protocol which maintains the path information that gets updated dynamically. Updates that have looped through the network and returned to the same node are easily detected and discarded. This algorithm is sometimes used in Bellman–Ford routing algorithms to avoid "Count to Infinity" problems.

In Internet routing, the default-free zone (DFZ) is the collection of all Internet autonomous systems (AS) that do not require a default route to route a packet to any destination. Conceptually, DFZ routers have a "complete" Border Gateway Protocol table, sometimes referred to as the Internet routing table, global routing table or global BGP table. However, internet routing changes rapidly and the widespread use of route filtering ensures that no router has a complete view of all routes. Any routing table created would look different from the perspective of different routers, even if a stable view could be achieved.

A routing protocol specifies how routers communicate with each other to distribute information that enables them to select paths between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability.

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

An IPv6 transition mechanism is a technology that facilitates the transitioning of the Internet from the Internet Protocol version 4 (IPv4) infrastructure in use since 1983 to the successor addressing and routing system of Internet Protocol Version 6 (IPv6). As IPv4 and IPv6 networks are not directly interoperable, transition technologies are designed to permit hosts on either network type to communicate with any other host.

A Request for Comments (RFC), in the context of Internet governance, is a type of publication from the Internet Engineering Task Force (IETF) and the Internet Society (ISOC), usually describing methods, behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems.

In computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment.

Border Gateway Protocol Security (BGPsec) is a security extension of the Border Gateway Protocol defined in RFC 8205, published in September 2017. BGPsec provides to receivers of valid BGPsec UPDATE messages cryptographic verification of the routes they advertise. BGPsec replaces the BGP AS_PATH attribute with a new BGPsec_Path attribute.

<span class="mw-page-title-main">Stephen Kent (network security)</span> American computer scientist

Stephen Thomas Kent is an American computer scientist, noted for his contributions to network security.

References

  1. E. Rosen (October 1982). EXTERIOR GATEWAY PROTOCOL (EGP). IETF. doi: 10.17487/RFC0827 . RFC 827.Status Unknown. Updated by RFC  904.
  2. D. Mills (April 1984). Exterior Gateway Protocol Formal Specification. Network Working Group. doi: 10.17487/RFC0904 . RFC 904.Status Unknown. Updates RFC  827 and 888.
  3. Y. Rekhter; P. Gross (March 1995). Application of the Border Gateway Protocol in the Internet. Network Working Group. doi: 10.17487/RFC1772 . RFC 1772.Draft Standard. Obsoletes RFC  1655.

See also


  1. # # # # # # #