Extraneous and missing solutions

Last updated

In mathematics, an extraneous solution (or spurious solution) is one which emerges from the process of solving a problem but is not a valid solution to it. [1] A missing solution is a valid one which is lost during the solution process. Both situations frequently result from performing operations that are not invertible for some or all values of the variables involved, which prevents the chain of logical implications from being bidirectional.

Contents

Extraneous solutions: multiplication

One of the basic principles of algebra is that one can multiply both sides of an equation by the same expression without changing the equation's solutions. However, strictly speaking, this is not true, in that multiplication by certain expressions may introduce new solutions that were not present before. For example, consider the following equation:

If we multiply both sides by zero, we get,

This is true for all values of , so the solution set is all real numbers. But clearly not all real numbers are solutions to the original equation. The problem is that multiplication by zero is not invertible: if we multiply by any nonzero value, we can reverse the step by dividing by the same value, but division by zero is not defined, so multiplication by zero cannot be reversed.

More subtly, suppose we take the same equation and multiply both sides by . We get

This quadratic equation has two solutions: and But if is substituted for in the original equation, the result is the invalid equation . This counterintuitive result occurs because in the case where , multiplying both sides by multiplies both sides by zero, and so necessarily produces a true equation just as in the first example.

In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that expression is equal to zero. But it is not sufficient to exclude these values, because they may have been legitimate solutions to the original equation. For example, suppose we multiply both sides of our original equation by We get

which has only one real solution: . This is a solution to the original equation so cannot be excluded, even though for this value of .

Extraneous solutions: rational

Extraneous solutions can arise naturally in problems involving fractions with variables in the denominator. For example, consider this equation:

To begin solving, we multiply each side of the equation by the least common denominator of all the fractions contained in the equation. In this case, the least common denominator is . After performing these operations, the fractions are eliminated, and the equation becomes:

Solving this yields the single solution However, when we substitute the solution back into the original equation, we obtain:

The equation then becomes:

This equation is not valid, since one cannot divide by zero. Therefore, the solution is extraneous and not valid, and the original equation has no solution.

For this specific example, it could be recognized that (for the value ), the operation of multiplying by would be a multiplication by zero. However, it is not always simple to evaluate whether each operation already performed was allowed by the final answer. Because of this, often, the only simple effective way to deal with multiplication by expressions involving variables is to substitute each of the solutions obtained into the original equation and confirm that this yields a valid equation. After discarding solutions that yield an invalid equation, we will have the correct set of solutions. In some cases, as in the above example, all solutions may be discarded, in which case the original equation has no solution.

Missing solutions: division

Extraneous solutions are not too difficult to deal with because they just require checking all solutions for validity. However, more insidious are missing solutions, which can occur when performing operations on expressions that are invalid for certain values of those expressions.

For example, if we were solving the following equation, the correct solution is obtained by subtracting from both sides, then dividing both sides by :

By analogy, we might suppose we can solve the following equation by subtracting from both sides, then dividing by :

The solution is in fact a valid solution to the original equation; but the other solution, , has disappeared. The problem is that we divided both sides by , which involves the indeterminate operation of dividing by zero when

It is generally possible (and advisable) to avoid dividing by any expression that can be zero; however, where this is necessary, it is sufficient to ensure that any values of the variables that make it zero also fail to satisfy the original equation. For example, suppose we have this equation:

It is valid to divide both sides by , obtaining the following equation:

This is valid because the only value of that makes equal to zero is which is not a solution to the original equation.

In some cases we are not interested in certain solutions; for example, we may only want solutions where is positive. In this case it is okay to divide by an expression that is only zero when is zero or negative, because this can only remove solutions we do not care about.

Other operations

Multiplication and division are not the only operations that can modify the solution set. For example, take the problem:

If we take the positive square root of both sides, we get:

We are not taking the square root of any negative values here, since both and are necessarily positive. But we have lost the solution The reason is that is actually not in general the positive square root of If is negative, the positive square root of is If the step is taken correctly, it leads instead to the equation:

This equation has the same two solutions as the original one: and

We can also modify the solution set by squaring both sides, because this will make any negative values in the ranges of the equation positive, causing extraneous solutions.

See also

Related Research Articles

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

<span class="mw-page-title-main">Elementary algebra</span> Basic concepts of algebra

Elementary algebra, also known as college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.

In mathematics and computer science, Horner's method is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials.

<span class="mw-page-title-main">Newton's method</span> Algorithm for finding zeros of functions

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots of a real-valued function. The most basic version starts with a real-valued function f, its derivative f, and an initial guess x0 for a root of f. If f satisfies certain assumptions and the initial guess is close, then

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of one or more linear equations involving the same variables. For example,

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints. It is named after the mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Cube root</span> Number whose cube is a given number

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of 8 are and . The three cube roots of −27i are:

<span class="mw-page-title-main">Completing the square</span> Method for solving quadratic equations

In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form

<span class="mw-page-title-main">Equation solving</span> Finding values for variables that make an equation true

In mathematics, to solve an equation is to find its solutions, which are the values that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values such that, when substituted for the unknowns, the equation becomes an equality. A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set.

In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

In mathematics, an integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations, but is also used within multivariable calculus when multiplying through by an integrating factor allows an inexact differential to be made into an exact differential. This is especially useful in thermodynamics where temperature becomes the integrating factor that makes entropy an exact differential.

In mathematics, specifically in elementary arithmetic and elementary algebra, given an equation between two fractions or rational expressions, one can cross-multiply to simplify the equation or determine the value of a variable.

<span class="mw-page-title-main">Transcendental equation</span> Equation whose side(s) describe a transcendental function

In applied mathematics, a transcendental equation is an equation over the real numbers that is not algebraic, that is, if at least one of its sides describes a transcendental function. Examples include:

In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term. The method is used to bring formulas into a desired form.

<span class="mw-page-title-main">Rod calculus</span>

Rod calculus or rod calculation was the mechanical method of algorithmic computation with counting rods in China from the Warring States to Ming dynasty before the counting rods were increasingly replaced by the more convenient and faster abacus. Rod calculus played a key role in the development of Chinese mathematics to its height in Song Dynasty and Yuan Dynasty, culminating in the invention of polynomial equations of up to four unknowns in the work of Zhu Shijie.

<span class="mw-page-title-main">Diophantus II.VIII</span>

The eighth problem of the second book of Arithmetica by Diophantus is to divide a square into a sum of two squares.

References

  1. Ron Larson (1 January 2011). Calculus I with Precalculus. Cengage Learning. pp. 4–. ISBN   978-0-8400-6833-0.