FC connector

Last updated
FC/PC connector FCPC 002.jpg
FC/PC connector

The FC connector is a fiber-optic connector with a threaded body, which was designed for use in high-vibration environments. It is commonly used with both single-mode optical fiber and polarization-maintaining optical fiber. FC connectors are used in datacom, telecommunications, measurement equipment, and single-mode lasers. They are becoming less common, displaced by SC and LC connectors. [1] The FC connector has been standardized in TIA fiber optic connector intermateability standard EIA/TIA-604-4. [2]

Contents

The FC connector was originally called a "Field Assembly Connector" by its inventors. [3] The name "FC" is an acronym for "ferrule connector" or "fiber channel". [4]

Design

The fiber end is embedded in a 2.5 mm ferrule made of zirconia ceramic or stainless steel. The tip is then typically polished to produce a rounded surface, called "physical contact" polish. This surface profile means that when the fibers are mated they touch only at their cores, allowing transmission with low loss. The fibers are spring-loaded to control the force as the plug is screwed into the receptacle. [2] A key prevents the fiber from rotating while the connectors are being mated.

Polish options

Some manufacturers have several grades of polish, for example an FC connector may be designated "FC/PC" (for Physical Contact), while "FC/SPC" and "FC/UPC" may denote "super" and "ultra" polish qualities, respectively. Higher grades of polish give less insertion loss and lower back-reflection.

For applications requiring very low back-reflection, the fiber end-face is polished at an angle (the typical industry standard being 8°) to prevent light that reflects from the interface from traveling back up the fiber. Because of the angle, the reflected light does not stay in the fiber core but instead leaks out into the cladding. Angle-polished connectors only mate properly to other angle-polished connectors. [2] Mating to a non-angle polished connector causes very high insertion loss. Generally angle-polished connectors have higher insertion loss than good quality straight physical contact ones. "Ultra" quality connectors may achieve comparable back reflection to an angled connector when connected, but an angled connection maintains low back reflection even when the output end of the fiber is unmated.

Angle-polished connections are distinguished visibly by the use of a green strain relief boot. The connectors are typically designated "FC/APC" (for Angled Physical Contact), or merely "FCA".

Analysis

FC connectors' floating ferrule provides good mechanical isolation. FC connectors need to be mated more carefully than push-pull type connectors due to the need to align the key, and due to the risk of scratching the fiber endface while inserting the ferrule into the jack. FC connectors have been replaced in many applications by SC and LC connectors. [1]

There are four incompatible standards for key widths on FC connectors: one for FC/PC, two for FC/APC, and one that can be used for either. [2]

FC Connector Key Widths [2]
Connector typePlug key width (mm)Receptacle keyway width (mm)
FC/PC≤ 2.14≥ 2.15
FC/APC type N (wide key)2.09–2.142.15–2.20
FC/APC type R (narrow key)1.97–2.022.03–2.08
Either2.13–2.152.16–2.18

The 2.14 mm FC/APC key format is typically called "wide key", "NTT" or "type N". [5] The narrower 2 mm key format is called "Reduced" or "type R". Type R plugs will mate to any receptacle, but will fail to maintain precise rotation angle unless the receptacle is also type R. Type N plugs will not mate with type R receptacles but will mate with FC/PC receptacles. FC/PC plugs will mate with type N receptacles and may or may not mate with type R receptacles. Some manufacturers mark type R keys with a single scribe mark on the key, and type N keys with a double scribe mark. [5]

Accurate rotation angle alignment is especially important for polarization-maintaining (PM) fiber, where rotational misalignment between mated fibers decreases the polarization extinction ratio of the connection. PM FC/PC connectors typically use FC/APC keying since the angular alignment tolerance is tighter.

Some connector designs have the key as a separate, indexable component. This can allow for some reduction in insertion losses (depending on the concentricity accuracy of the ferrule) by allowing the ferrule to be rotated to a more fortuitous alignment.

See also

Related Research Articles

In optics, an index-matching material is a substance, usually a liquid, cement (adhesive), or gel, which has an index of refraction that closely approximates that of another object.

<span class="mw-page-title-main">Optical attenuator</span> Device used to reduce the power level of an optical signal

An optical attenuator, or fiber optic attenuator, is a device used to reduce the power level of an optical signal, either in free space or in an optical fiber. The basic types of optical attenuators are fixed, step-wise variable, and continuously variable.

<span class="mw-page-title-main">Polarization-maintaining optical fiber</span> Single-mode optical fiber for linearly polarized light

In fiber optics, polarization-maintaining optical fiber is a single-mode optical fiber in which linearly polarized light, if properly launched into the fiber, maintains a linear polarization during propagation, exiting the fiber in a specific linear polarization state; there is little or no cross-coupling of optical power between the two polarization modes. Such fiber is used in special applications where preserving polarization is essential.

<span class="mw-page-title-main">Single-mode optical fiber</span> Optical fiber designed to carry only a single mode of light, the transverse mode

In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmholtz equation for waves, which is obtained by combining Maxwell's equations and the boundary conditions. These modes define the way the wave travels through space, i.e. how the wave is distributed in space. Waves can have the same mode but have different frequencies. This is the case in single-mode fibers, where we can have waves with different frequencies, but of the same mode, which means that they are distributed in space in the same way, and that gives us a single ray of light. Although the ray travels parallel to the length of the fiber, it is often called transverse mode since its electromagnetic oscillations occur perpendicular (transverse) to the length of the fiber. The 2009 Nobel Prize in Physics was awarded to Charles K. Kao for his theoretical work on the single-mode optical fiber. The standards G.652 and G.657 define the most widely used forms of single-mode optical fiber.

<span class="mw-page-title-main">Birefringence</span> Refractive property of materials

Birefringence means double refraction. It is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefringent or birefractive. The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

<span class="mw-page-title-main">Ferrule</span> Ring used for fastening or joining

A ferrule is any of a number of types of objects, generally used for fastening, joining, sealing, or reinforcement. They are often narrow circular rings made from metal, or less commonly, plastic. Ferrules are also often referred to as eyelets or grommets within the manufacturing industry.

<span class="mw-page-title-main">Fiberscope</span> Flexible optical fiber bundle with an eyepiece on one end and a lens on the other

A fiberscope is a flexible optical fiber bundle with a lens on one end and an eyepiece or camera on the other. It is used to examine and inspect small, difficult-to-reach places such as the insides of machines, locks, and the human body.

<span class="mw-page-title-main">Pockels effect</span> Linear change in the refractive index of optical media due to an electric field

In optics, the Pockels effect, or Pockels electro-optic effect, is a directionally-dependent linear variation in the refractive index of an optical medium that occurs in response to the application of an electric field. It is named after the German physicist Friedrich Carl Alwin Pockels, who studied the effect in 1893. The non-linear counterpart, the Kerr effect, causes changes in the refractive index at a rate proportional to the square of the applied electric field. In optical media, the Pockels effect causes changes in birefringence that vary in proportion to the strength of the applied electric field.

<span class="mw-page-title-main">Backscatter</span> Reflection which reverses the direction of a wave, particle, or signal

In physics, backscatter is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.

<span class="mw-page-title-main">Gender of connectors and fasteners</span> Male components insert into female components

In electrical and mechanical trades and manufacturing, each half of a pair of mating connectors or fasteners is conventionally assigned the designation male or female. The female connector is generally a receptacle that receives and holds the male connector. Alternative terminology such as plug and socket or jack are sometimes used, particularly for electrical connectors.

A mechanical splice is a junction of two or more optical fibers that are aligned and held in place by a self-contained assembly. The fibers are not permanently joined, just precisely held together so that light can pass from one to another. This impermanence is an important advantage over fusion splicing, as splice loss, the amount of power that the splice fails to transmit, can be better measured and prevented.

<span class="mw-page-title-main">Optical fiber connector</span> Device used to join fiber optic strands in communication systems

An optical fiber connector is a device used to link optical fibers, facilitating the efficient transmission of light signals. An optical fiber connector enables quicker connection and disconnection than splicing.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss and are immune to electromagnetic interference. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

<span class="mw-page-title-main">Magneto-optic Kerr effect</span> Changes to light reflected from a magnetized surface

In physics the magneto-optic Kerr effect (MOKE) or the surface magneto-optic Kerr effect (SMOKE) is one of the magneto-optic effects. It describes the changes to light reflected from a magnetized surface. It is used in materials science research in devices such as the Kerr microscope, to investigate the magnetization structure of materials.

<span class="mw-page-title-main">Fiber-optic cable</span> Cable assembly containing one or more optical fibers that are used to carry light

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for fiber-optic communication in different applications, for example long-distance telecommunication or providing a high-speed data connection between different parts of a building.

<span class="mw-page-title-main">U.S. Military connector specifications</span>

Electrical or fiber-optic connectors used by U.S. Department of Defense were originally developed in the 1930s for severe aeronautical and tactical service applications, and the Type "AN" (Army-Navy) series set the standard for modern military circular connectors. These connectors, and their evolutionary derivatives, are often called Military Standard, "MIL-STD", or (informally) "MIL-SPEC" or sometimes "MS" connectors. They are now used in aerospace, industrial, marine, and even automotive commercial applications.

<span class="mw-page-title-main">TOSLINK</span> Standardized optical fiber digital audio interconnect

TOSLINK is a standardized optical fiber connector system. Generically known as optical audio, the most common use of the TOSLINK optical fiber connector is in consumer audio equipment in which the digital optical socket carries (transmits) a stream of digital audio signals from audio equipment to an AV receiver that can decode two channels of uncompressed, pulse-code modulated (PCM) audio; or decode compressed 5.1/7.1 surround sound audio signals, such as Dolby Digital and DTS. Unlike an HDMI connector cable, a TOSLINK optical fiber connector does not possess the bandwidth capacity to carry the uncompressed audio signals of Dolby TrueHD and of DTS-HD Master Audio; nor carry more than two channels of PCM audio.

A fiber-optic patch cord is a fiber-optic cable capped at each end with connectors that allow it to be rapidly and conveniently connected to telecommunication equipment. This is known as interconnect-style cabling.

A fiber-optic adapter connects two optical fiber connectors in the fiber optic lines.

An optical module is a typically hot-pluggable optical transceiver used in high-bandwidth data communications applications. Optical modules typically have an electrical interface on the side that connects to the inside of the system and an optical interface on the side that connects to the outside world through a fiber optic cable. The form factor and electrical interface are often specified by an interested group using a multi-source agreement (MSA). Optical modules can either plug into a front panel socket or an on-board socket. Sometimes the optical module is replaced by an electrical interface module that implements either an active or passive electrical connection to the outside world. A large industry supports the manufacturing and use of optical modules.

References

  1. 1 2 Hayes, Jim (2005). "Connector Identifier". The Fiber Optic Association — Tech Topics. Retrieved Feb 6, 2009.
  2. 1 2 3 4 5 "Fiber Optic Connector Intermateability Standard, Type FC and FC-APC". TIA Standard FOCIS-4. Telecommunications Industry Association. Sep 9, 2004. TIA-604-4-B.
  3. Nawata, K. (June 1980). "Multimode and single-mode fiber connectors technology". IEEE Journal of Quantum Electronics. QE-16 (6): 618–627. doi:10.1109/JQE.1980.1070542.
  4. Keiser, Gerd (August 2003). Optical Communications Essentials . McGraw-Hill Networking Professional. p.  132–. ISBN   0-07-141204-2.
  5. 1 2 Sezerman, Omur; Best, Garland (December 1997). "Accurate alignment preserves polarization". Laser Focus World. Retrieved March 12, 2009.