FM101

Last updated

FM101 is a selective adenosine A3 receptor modulator developed for various indications, including glaucoma and non-alcoholic fatty liver disease. [1] [2] [3]

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Adenosine</span> Chemical compound

Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building blocks of RNA (and its derivative deoxyadenosine is a building block of DNA), which are essential for all life on Earth. Its derivatives include the energy carriers adenosine mono-, di-, and triphosphate, also known as AMP/ADP/ATP. Cyclic adenosine monophosphate (cAMP) is pervasive in signal transduction. Adenosine is used as an intravenous medication for some cardiac arrhythmias.

<span class="mw-page-title-main">Adenosine receptor</span> Class of four receptor proteins to the molecule adenosine

The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a different gene.

Adenosine A<sub>1</sub> receptor Cell surface receptor found in humans

The adenosine A1 receptor (A1AR) is one member of the adenosine receptor group of G protein-coupled receptors with adenosine as endogenous ligand.

<span class="mw-page-title-main">Levonantradol</span> Chemical compound

Levonantradol (CP 50,556-1) is a synthetic cannabinoid analog of dronabinol (Marinol) developed by Pfizer in the 1980s. It is around 30 times more potent than THC, and exhibits antiemetic and analgesic effects via activation of CB1 and CB2 cannabinoid receptors. Levonantradol is not currently used in medicine as dronabinol or nabilone are felt to be more useful for most conditions, however it is widely used in research into the potential therapeutic applications of cannabinoids.

<span class="mw-page-title-main">Estrogen receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen receptor alpha (ERα), also known as NR3A1, is one of two main types of estrogen receptor, a nuclear receptor that is activated by the sex hormone estrogen. In humans, ERα is encoded by the gene ESR1.

<span class="mw-page-title-main">Sigma-1 receptor</span> Chaperone protein

The sigma-1 receptor (σ1R), one of two sigma receptor subtypes, is a chaperone protein at the endoplasmic reticulum (ER) that modulates calcium signaling through the IP3 receptor. In humans, the σ1 receptor is encoded by the SIGMAR1 gene.

<span class="mw-page-title-main">Magnolol</span> Chemical compound

Magnolol is an organic compound that is classified as lignan. It is a bioactive compound found in the bark of the Houpu magnolia and in M. grandiflora. The compound exists at the level of a few percent in the bark of species of magnolia, the extracts of which have been used in traditional Chinese and Japanese medicine. In addition to magnolol, related lignans occur in the extracts including honokiol, which is an isomer of magnolol.

A heteromer is something that consists of different parts; the antonym of homomeric. Examples are:

Adenosine A<sub>2A</sub> receptor Cell surface receptor found in humans

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

<span class="mw-page-title-main">HSP90B1</span> Protein-coding gene in the species Homo sapiens

Heat shock protein 90kDa beta member 1 (HSP90B1), known also as endoplasmin, gp96, grp94, or ERp99, is a chaperone protein that in humans is encoded by the HSP90B1 gene.

Adenosine A<sub>3</sub> receptor Cell surface receptor found in humans

The adenosine A3 receptor, also known as ADORA3, is an adenosine receptor, but also denotes the human gene encoding it.

Adenosine A<sub>2B</sub> receptor Cell surface receptor found in humans

The adenosine A2B receptor, also known as ADORA2B, is a G-protein coupled adenosine receptor, and also denotes the human adenosine A2b receptor gene which encodes it.

<span class="mw-page-title-main">SCH-58261</span> Chemical compound

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

<span class="mw-page-title-main">PSB-10</span> Chemical compound

PSB-10 is a drug which acts as a selective antagonist for the adenosine A3 receptor (ki value at human A3 receptor is 0.44 nM), with high selectivity over the other three adenosine receptor subtypes (ki values at human A1, A2A and A2B receptors are 4.1, 3.3 and 30 μM). Further pharmacological experiments in a [35S]GTPγS binding assay using hA3-CHO-cells indicated that PSB-10 acts as an inverse agonist (IC50 = 4 nM). It has been shown to produce antiinflammatory effects in animal studies. Simple xanthine derivatives such as caffeine and DPCPX have generally low affinity for the A3 subtype and must be extended by expanding the ring system and adding an aromatic group to give high A3 affinity and selectivity. The affinity towards adenosine A3 subtype was measured against the radioligand PSB-11.

Palmitoylethanolamide (PEA) is an endogenous fatty acid amide, and lipid modulator PEA has been studied in in vitro and in vivo systems using exogenously added or dosed compound; there is evidence that it binds to a nuclear receptor, through which it exerts a variety of biological effects, some related to chronic inflammation and pain.

<span class="mw-page-title-main">Cartazolate</span> Chemical compound

Cartazolate (SQ-65,396) is a drug of the pyrazolopyridine class. It acts as a GABAA receptor positive allosteric modulator at the barbiturate binding site of the complex and has anxiolytic effects in animals. It is also known to act as an adenosine antagonist at the A1 and A2 subtypes and as a phosphodiesterase inhibitor. Cartazolate was tested in human clinical trials and was found to be efficacious for anxiety but was never marketed. It was developed by a team at E.R. Squibb and Sons in the 1970s.

<span class="mw-page-title-main">Purinergic signalling</span> Signalling complex involving purine nucleosides and their receptors

Purinergic signalling is a form of extracellular signalling mediated by purine nucleotides and nucleosides such as adenosine and ATP. It involves the activation of purinergic receptors in the cell and/or in nearby cells, thereby regulating cellular functions.

An adenosine receptor agonist is a drug which acts as an agonist of one or more of the adenosine receptors. Examples include the neurotransmitter adenosine, its phosphates, adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP), and the pharmaceutical drug regadenoson.

<span class="mw-page-title-main">Namodenoson</span> Chemical compound

Namodenoson is a small molecule A3 adenosine receptor (A3AR) agonist. It is developed by Can-Fite for non-alcoholic fatty liver disease, liver cancer, and pancreatic cancer.

References

  1. Jayanetti, Viran; Sandhu, Sartaj; Lusthaus, Jed A. (20 November 2020). "The Latest Drugs in Development That Reduce Intraocular Pressure in Ocular Hypertension and Glaucoma". Journal of Experimental Pharmacology. 12: 539–548. doi: 10.2147/JEP.S281187 . PMC   7685378 . PMID   33244278.
  2. Park, JeongSu; Choi, Su-Yeon; Wang, Feng; Park, Chong-Woo; Lee, Jiyoun; Lee, Hyuk-Woo; Roh, Yoon-Seok (April 2020). "Imbalance Between α1-Antitrypsin and Neutrophil Elastase in Simple Steatosis Promotes Inflammation and Fibrosis Through Regulation of Adenosine a3 Receptor Signaling in Non-alcoholic Steatohepatitis". The FASEB Journal. 34 (S1): 1. doi: 10.1096/fasebj.2020.34.s1.03837 . S2CID   219099467.
  3. Park, Chong-Woo; Han, Chung-Tack; Sakaguchi, Yasue; Lee, Jiyoun; Youn, Hwa-young (12 February 2020). "Safety evaluation of FM101, an A3 adenosine receptor modulator, in rat, for developing as therapeutics of glaucoma and hepatitis". EXCLI Journal. 19: 187–200. doi:10.17179/excli2019-2058. ISSN   1611-2156. PMC   7105940 . PMID   32256265.