Fast Flux Test Facility

Last updated
The Fast Flux Test Facility with labels Fftf-site-labels.jpg
The Fast Flux Test Facility with labels
Commemorative photo marking the completion of the FFTF system. FFTF completion.jpg
Commemorative photo marking the completion of the FFTF system.

The Fast Flux Test Facility (FFTF) is a 400 MW thermal, liquid sodium cooled, nuclear test reactor owned by the U.S. Department of Energy. It does not generate electricity. It is situated in the 400 Area of the Hanford Site, which is located in the state of Washington.

Contents

History

The construction of the FFTF was completed in 1978, and the first reaction took place in 1980. From April 1982 to April 1992 it operated as a national research facility to test various aspects of commercial reactor design and operation, especially relating to breeder reactors. The FFTF is not a breeder reactor itself, but rather a sodium-cooled fast neutron reactor, as the name suggests.

It is stated on the site dedicated to the FFTF, that it tested "advanced nuclear fuels, materials, components, nuclear power plant operations and maintenance protocols, and reactor safety designs."

By 1993, the number of uses to which the reactor could be put was diminishing, so the decision was taken in December of that year to deactivate it. Over the next three years, the active parts of the facility were gradually halted, fuel rods removed and stored in above-ground dry storage vessels. However, in January 1997, the DOE ordered that the reactor be maintained in a standby condition, pending a decision as to whether to incorporate it into the US Government's tritium production program, for both medical and fusion research.

Since then, due to legal wrangling, decommissioning has been stopped and restarted at intervals. In December 2001, the deactivation was continued, after the DOE found that it was not needed for tritium production. Work was halted in 2002 when court action was begun. As of May 2003, deactivation has continued, and it is currently in a state of cold standby.

In May 2005 the core support basket was drilled to drain the remaining sodium coolant, which effectively made the reactor unusable. However, a technical study is being pursued with regard to repairing the reactor.[ citation needed ] As the coolant was drained, the system was filled with high purity argon gas to prevent corrosion. The support basket is an unpressurized area, and the reactor core has not yet been breached (as of June 2006).[ citation needed ]

Frontal view of the Fast Flux Test Facility FFTF 1a-041403 large.jpg
Frontal view of the Fast Flux Test Facility

The reason for renewed interest in the FFTF is that the global atmosphere with regard to nuclear energy has changed, and the US is pursuing nuclear power once again. To build a similar facility would cost an estimated $2–5 billion.[ citation needed ]

In April, 2006, the FFTF was honored by the American Nuclear Society as a "National Nuclear Historic Landmark". Achievements cited include:

The probable successor to the FFTF will be the Versatile Test Reactor, which will roughly have the same size and capabilities as future test reactor and which will be built at Idaho National Laboratory in Idaho or Oak Ridge National Laboratory in Tennessee in the 2020s.

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device for controlled nuclear reactions

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:

<span class="mw-page-title-main">Savannah River Site</span> US Department of Energy reservation in South Carolina

The Savannah River Site (SRS) is a U.S. Department of Energy (DOE) reservation in the United States, located in the state of South Carolina on land in Aiken, Allendale, and Barnwell counties adjacent to the Savannah River. It lies 25 miles (40 km) southeast of Augusta, Georgia. The site was built during the 1950s to refine nuclear materials for deployment in nuclear weapons. It covers 310 square miles (800 km2) and employs more than 10,000 people.

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor (IFR), originally the advancedliquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">Experimental Breeder Reactor II</span> Decommissioned experimental nuclear reactor in Idaho, USA

Experimental Breeder Reactor-II (EBR-II) was a sodium-cooled fast reactor designed, built and operated by Argonne National Laboratory at the National Reactor Testing Station in Idaho. It was shut down in 1994. Custody of the reactor was transferred to Idaho National Laboratory after its founding in 2005.

<span class="mw-page-title-main">Sodium-cooled fast reactor</span> Type of nuclear reactor cooled by molten sodium

A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.

In applications such as nuclear reactors, a neutron poison is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable effect. However, neutron-absorbing materials, also called poisons, are intentionally inserted into some types of reactors in order to lower the high reactivity of their initial fresh fuel load. Some of these poisons deplete as they absorb neutrons during reactor operation, while others remain relatively constant.

<span class="mw-page-title-main">SEFOR</span>

SEFOR was an experimental fast breeder reactor located in Cove Creek Township, Washington County, near Strickler, in northwest Arkansas. The site consisted of a 20-Megawatt (thermal), Sodium-Cooled Test Reactor, a Shop Building, an Operations Building, a Maintenance Shed, and an Electrical Transformer yard. It operated from 1969 to 1972 when the program ended. It was then acquired by the University of Arkansas, in hopes that it could be used as a research facility in 1975, but it never happened. The University maintained the decommissioned site until finally receiving federal funds to dismantle the facility in 2016, which completed in 2019.

<span class="mw-page-title-main">N-Reactor</span>

The N-Reactor was a water/graphite-moderated nuclear reactor constructed during the Cold War and operated by the U.S. government at the Hanford Site in Washington; it began production in 1963.

<span class="mw-page-title-main">BN-600 reactor</span> Russian sodium-cooled fast breeder reactor

The BN-600 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. It has a 600 MWe gross capacity and a 560 MWe net capacity, provided to the Middle Urals power grid. It has been in operation since 1980 and represents an improvement to the preceding BN-350 reactor. In 2014, its larger sister reactor, the BN-800 reactor, began operation.

A liquid metal cooled nuclear reactor, or LMR is a type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for breeder reactor power generation. They have also been used to power nuclear submarines.

<span class="mw-page-title-main">Hallam Nuclear Power Facility</span> Decommissioned nuclear power plant in Nebraska

The Hallam Nuclear Power Facility (HNPF) in Nebraska was a 75 MWe sodium-cooled graphite-moderated nuclear power plant built by Atomics International and operated by Consumers Public Power District of Nebraska. It was built in tandem with and co-located with a conventional coal-fired power station, the Sheldon Power Station. The facility featured a shared turbo generator that could accept steam from either heat source, and a shared control room.

The Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium-cooled, fast breeder reactor that is being constructed at Kokkilamedu, near Kalpakkam, in Tamil Nadu state, India. The Indira Gandhi Centre for Atomic Research (IGCAR) is responsible for the design of this reactor, the Advanced Fuel Fabrication Facility at the Bhabha Atomic Research Centre in Tarapur is responsible for MOX fuel fabrication and BHEL is providing technology and equipment for construction of the reactor. The facility builds on the decades of experience gained from operating the lower power Fast Breeder Test Reactor (FBTR). At first, the reactor's construction was supposed to be completed in September 2010, but there were several delays. The Prototype Fast Breeder Reactor is scheduled to be put into service in December 2024, which is more than 20 years after construction began and 14 years after the original commissioning date, as of December 2023. The project's cost has doubled from ₹3,500 crore to ₹7,700 crore due to the multiple delays. The construction was completed on 4th March 2024 with commencement of core loading of the reactor hence paving the way for the eventual full utilization of India’s abundant thorium reserves.

A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.

<span class="mw-page-title-main">Stable salt reactor</span>

The stable salt reactor (SSR) is a nuclear reactor design under development by Moltex Energy Canada Inc. and its subsidiary Moltex Energy USA LLC, based in Canada, the United States, and the United Kingdom, as well as MoltexFLEX Ltd., based in the United Kingdom.

<span class="mw-page-title-main">Robert Ferguson (physicist)</span> Nuclear physicist (1932–2022)

Robert Louis (Bob) Ferguson was a nuclear-trained physicist and a 60-year veteran in the field of nuclear energy. He was best known for being appointed the first Deputy Assistant Secretary for Nuclear Energy Programs for the U.S. Department of Energy (DOE) by the first Energy Secretary, James Schlesinger, serving from 1978 to 1980 during President Jimmy Carter's administration.

<span class="mw-page-title-main">Versatile Test Reactor</span> Project by the U.S. Department of Energy

The Versatile Test Reactor (VTR) was a project by the U.S. Department of Energy to build a fast-neutron test reactor by 2026. Funding for the project was scrapped in 2022

References

46°26′07″N119°21′36″W / 46.435284°N 119.360061°W / 46.435284; -119.360061