Fern ally

Last updated
A clubmoss, from the Lycopodiopsida Lycopodium annotinum 1127100195.jpg
A clubmoss, from the Lycopodiopsida
Isoetes lacustris, a quillwort, from the Isoetopsida Isoetes lacustris nf.jpg
Isoëtes lacustris, a quillwort, from the Isoetopsida
Equisetum fluviatile, from the Equisetopsida (horsetails) Equisetum fluviatile Luc Viatour.jpg
Equisetum fluviatile , from the Equisetopsida (horsetails)
Psilotum nudum, from the Psilotopsida (whisk ferns) Psilotum.jpg
Psilotum nudum, from the Psilotopsida (whisk ferns)

Fern allies are a diverse group of seedless vascular plants that are not true ferns. Like ferns, a fern ally disperses by shedding spores to initiate an alternation of generations.

Contents

Classification

Originally, three or four groups of plants were considered to be fern allies. In various classification schemes, these may be grouped as classes or divisions within the plant kingdom. Fern allies and ferns were sometimes grouped together as division Pteridophyta. [1] Another traditional classification scheme of living plants is as follows (here, the first three classes are the "fern allies"):

More recent evidence shows that the class Filices, as described above, is not monophyletic. The following classification represents a consensus view (although different authors may use different names for the various groups): [2]

Note that in either scheme, the same basic groups are recognized (Lycopodiophyta, Equisetopsida, Psilotopsida, and true ferns), but in the most recent scheme, both Equisetopsida and Psilotopsida are grouped as a subset of the true ferns, and only the Lycopodiophyta are not classified as ferns.

Relationships

Historically, several groups of plants were considered "fern allies": the clubmosses, spikemosses, and quillworts in the Lycopodiophyta, the whisk ferns in Psilotaceae, and the horsetails in the Equisetaceae. Similarly, three discrete groups of plants had been considered ferns: the adders-tongues, moonworts, and grape-ferns (Ophioglossales), the Marattiaceae, and the leptosporangiate ferns. More recent genetic studies have shown that the Lycopodiophyta are only distantly related to any other vascular plants, having radiated evolutionarily at the base of the vascular plant clade, while both the whisk ferns and horsetails are as much true ferns as are the Ophioglossoids and Marattiaceae. The Marattiaceae are a group of tropical ferns with a large, fleshy rhizome, and are now thought to be a sister group to the main group of ferns, the leptosporangiate ferns. The whisk ferns and Ophioglossids are demonstrably a clade, as are the leptosporangiate ferns and marattiaceae; however, the relationships between these two groups and the horsetails within the overarching clade of ferns remains uncertain.

Related Research Articles

<span class="mw-page-title-main">Fern</span> Class of vascular plants

A fern is a member of a group of vascular plants that reproduce via spores and have neither seeds nor flowers. The polypodiophytes include all living pteridophytes except the lycopods, and differ from mosses and other bryophytes by being vascular, i.e., having specialized tissues that conduct water and nutrients and in having life cycles in which the branched sporophyte is the dominant phase.

<span class="mw-page-title-main">Vascular plant</span> Clade of land plants with xylem and phloem

Vascular plants, also called tracheophytes or collectively Tracheophyta, form a large group of land plants that have lignified tissues for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue to conduct products of photosynthesis. Vascular plants include the clubmosses, horsetails, ferns, gymnosperms, and angiosperms. Scientific names for the group include Tracheophyta, Tracheobionta and Equisetopsida sensu lato. Some early land plants had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones.

<span class="mw-page-title-main">Lycopodiopsida</span> Class of vascular plants

Lycopodiopsida is a class of vascular plants known as lycopods, lycophytes or other terms including the component lyco-. Members of the class are also called clubmosses, firmosses, spikemosses and quillworts. They have dichotomously branching stems bearing simple leaves called microphylls and reproduce by means of spores borne in sporangia on the sides of the stems at the bases of the leaves. Although living species are small, during the Carboniferous, extinct tree-like forms (Lepidodendrales) formed huge forests that dominated the landscape and contributed to coal deposits.

<i>Selaginella</i> Genus of vascular plants in the family Selaginellaceae

Selaginella is the sole genus in the family Selaginellaceae, the spikemosses or lesser clubmosses, a kind of vascular plant.

<span class="mw-page-title-main">Lycophyte</span> Broadly circumscribed group of spore bearing plants

The lycophytes, when broadly circumscribed, are a vascular plant (tracheophyte) subgroup of the kingdom Plantae. They are sometimes placed in a division Lycopodiophyta or Lycophyta or in a subdivision Lycopodiophytina. They are one of the oldest lineages of extant (living) vascular plants; the group contains extinct plants that have been dated from the Silurian. Lycophytes were some of the dominating plant species of the Carboniferous period, and included the tree-like arboresencent lycophytes, some of which grew over 40 metres (130 ft) in height, although extant lycophytes are relatively small plants.

<span class="mw-page-title-main">Pinales</span> Order of seed plants, also known as conifers

The order Pinales in the division Pinophyta, class Pinopsida, comprises all the extant conifers. The distinguishing characteristic is the reproductive structure known as a cone produced by all Pinales. All of the extant conifers, such as cedar, celery-pine, cypress, fir, juniper, larch, pine, redwood, spruce, yew and Araucaria araucana are included here. Some fossil conifers, however, belong to other distinct orders within the division Pinophyta.

<span class="mw-page-title-main">Embryophyte</span> Subclade of green plants, also known as land plants

The Embryophyta, or land plants, are the most familiar group of green plants that comprise vegetation on Earth. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of green algae as sister of the Zygnematophyceae. The Embryophyta consist of the bryophytes plus the polysporangiophytes. Living embryophytes therefore include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and flowering plants. The land plants have diplobiontic life cycles and it is accepted now that they emerged from freshwater, multi-celled algae.

<span class="mw-page-title-main">Ophioglossaceae</span> Family of ferns

Ophioglossaceae, the adder's-tongue family, is a small family of ferns. In the Pteridophyte Phylogeny Group classification of 2016, it is the only family in the order Ophioglossales, which together with the Psilotales is placed in the subclass Ophioglossidae. The Ophioglossidae are one of the groups traditionally known as eusporangiate ferns. Members of the family differ from other ferns in a number of ways. Many have only a single fleshy leaf at a time. Their gametophytes are subterranean and rely on fungi for energy.

<span class="mw-page-title-main">Gleicheniales</span> Order of ferns

Gleicheniales is an order of ferns in the subclass Polypodiidae. The Gleicheniales have records potentially as early as the Carboniferous, but the oldest unambiguous records date to the Permian.

<span class="mw-page-title-main">Equisetidae</span> Subclass of ferns

Equisetidae is one of the four subclasses of Polypodiopsida (ferns), a group of vascular plants with a fossil record going back to the Devonian. They are commonly known as horsetails. They typically grow in wet areas, with whorls of needle-like branches radiating at regular intervals from a single vertical stem.

<span class="mw-page-title-main">Pteridophyte</span> Paraphyletic group of spore-bearing vascular plants

A pteridophyte is a vascular plant that disperses spores. Because pteridophytes produce neither flowers nor seeds, they are sometimes referred to as "cryptogams", meaning that their means of reproduction is hidden. Ferns, horsetails, and lycophytes are all pteridophytes. However, they do not form a monophyletic group because ferns are more closely related to seed plants than to lycophytes. "Pteridophyta" is thus no longer a widely accepted taxon, but the term pteridophyte remains in common parlance, as do pteridology and pteridologist as a science and its practitioner, respectively. Ferns and lycophytes share a life cycle and are often collectively treated or studied, for example by the International Association of Pteridologists and the Pteridophyte Phylogeny Group.

<span class="mw-page-title-main">Psilotaceae</span> Family of ferns

Psilotaceae is a family of ferns consisting of two genera, Psilotum and Tmesipteris with about a dozen species. It is the only family in the order Psilotales.

<span class="mw-page-title-main">Eusporangiate fern</span> Common name for a group of ferns

Eusporangiate ferns are vascular spore plants, whose sporangia arise from several epidermal cells and not from a single cell as in leptosporangiate ferns. Typically these ferns have reduced root systems and sporangia that produce large amounts of spores

<span class="mw-page-title-main">Leptosporangiate fern</span> Subclass of ferns

The Polypodiidae, commonly called leptosporangiate ferns, formerly Leptosporangiatae, are one of four subclasses of ferns, and the largest of these, being the largest group of living ferns, including some 11,000 species worldwide. The group has also been treated as the class Pteridopsida or Polypodiopsida, although other classifications assign them a different rank. Older names for the group include Filicidae and Filicales, although at least the "water ferns" were then treated separately.

<span class="mw-page-title-main">Euphyllophyte</span> Clade of vascular plants

The euphyllophytes are a clade of plants within the tracheophytes. The group may be treated as an unranked clade, a division under the name Euphyllophyta or a subdivision under the name Euphyllophytina. The euphyllophytes are characterized by the possession of true leaves ("megaphylls"), and comprise one of two major lineages of extant vascular plants. As shown in the cladogram below, the euphyllophytes have a sister relationship to the lycopodiophytes or lycopsids. Unlike the lycopodiophytes, which consist of relatively few presently living or extant taxa, the euphyllophytes comprise the vast majority of vascular plant lineages that have evolved since both groups shared a common ancestor more than 400 million years ago. The euphyllophytes consist of two lineages, the spermatophytes or seed plants such as flowering plants (angiosperms) and gymnosperms, and the Polypodiophytes or ferns, as well as a number of extinct fossil groups.

Psilophytopsida is a now obsolete class containing one order, Psilophytales, which was previously used to classify a number of extinct plants which are now placed elsewhere. The class was established in 1917, under the name Psilophyta, with only three genera for a group of fossil plants from the Upper Silurian and Devonian periods which lack true roots and leaves, but have a vascular system within a branching cylindrical stem. The living Psilotaceae, the whisk-ferns, were sometimes added to the class, which was then usually called Psilopsida. This classification is no longer in use.

<span class="mw-page-title-main">Ophioglossidae</span> Subclass of ferns

Ophioglossidae is one of the four subclasses of Polypodiopsida (ferns). This subclass consists of the ferns commonly known as whisk ferns, grape ferns, adder's-tongues and moonworts. It is equivalent to the class Psilotopsida in previous treatments, including Smith et al. (2006). The subclass contains two orders, Psilotales and Ophioglossales, whose relationship was only confirmed by molecular phylogenetic studies.

References

  1. Sporne, K.R. (1966), The Morphology of Pteridophytes (2nd ed.), London: Hutchinson, ISBN   978-0-09-104881-5
  2. Pryer, K. M., Schuettpelz, E., Wolf, P. G., Schneider, H., Smith, A. R. & Cranfill, R. (2004), "Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences", American Journal of Botany, 91 (10): 1582–1598, doi:10.3732/ajb.91.10.1582, PMID   21652310 {{citation}}: CS1 maint: multiple names: authors list (link)