Ferrole

Last updated
Structure of the ferrole Fe2C4H4(CO)6. Color scheme: red = O, gray = C, dark blue = Fe, white = H. Fe2C4H4(CO)6 (FCPTCF).png
Structure of the ferrole Fe2C4H4(CO)6. Color scheme: red = O, gray = C, dark blue = Fe, white = H.

In organoiron chemistry, a ferrole is a type of diiron complex containing the (OC)3FeC4R4 heterocycle that is pi-bonded to a Fe(CO)3 group. These compounds have Fe-Fe bonds (ca. 252 pm) and semi-bridging CO ligands (Fe-C distances = 178, 251 pm). They are typically air-stable, soluble in nonpolar solvents, and red-orange in color. [2]

Contents

Synthesis

Ferroles typically arise by the reaction of alkynes with iron carbonyls. Such reactions are known to generate many products, e.g. complexes of cyclopentadienones and para-quinones. [3] [4]

Another route involves the desulfurization of thiophenes (SC4R4) by iron carbonyls, shown in the following idealized equation:

Fe3(CO)12 + SC4R4 → Fe2(CO)6C4R4 + FeS + 6 CO

An unusual route to ferroles involves treatment of Collman's reagent with trimethylsilyl chloride (tms = (CH3)3Si):

2 Na2Fe(CO)4 + 4 tmsCl → Fe2(CO)6C4(Otms)4 + 2 CO + 4 NaCl (warning: unbalanced reaction !)

Reactions

Some ferroles react with tertiary phosphines to give the substituted flyover complex Fe2(CO)5(PR3)(C4R4CO). [5] [6]

Related Research Articles

<span class="mw-page-title-main">Carborane</span> Class of chemical compounds

Carboranes are electron-delocalized clusters composed of boron, carbon and hydrogen atoms. Like many of the related boron hydrides, these clusters are polyhedra or fragments of polyhedra. Carboranes are one class of heteroboranes.

A transition metal carbene complex is an organometallic compound featuring a divalent carbon ligand, itself also called a carbene. Carbene complexes have been synthesized from most transition metals and f-block metals, using many different synthetic routes such as nucleophilic addition and alpha-hydrogen abstraction. The term carbene ligand is a formalism since many are not directly derived from carbenes and most are much less reactive than lone carbenes. Described often as =CR2, carbene ligands are intermediate between alkyls (−CR3) and carbynes (≡CR). Many different carbene-based reagents such as Tebbe's reagent are used in synthesis. They also feature in catalytic reactions, especially alkene metathesis, and are of value in both industrial heterogeneous and in homogeneous catalysis for laboratory- and industrial-scale preparation of fine chemicals.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Diiron nonacarbonyl</span> Chemical compound

Diiron nonacarbonyl is an organometallic compound with the formula Fe2(CO)9. This metal carbonyl is an important reagent in organometallic chemistry and of occasional use in organic synthesis. It is a more reactive source of Fe(0) than Fe(CO)5. This micaceous orange solid is virtually insoluble in all common solvents.

<span class="mw-page-title-main">Dicobalt octacarbonyl</span> Chemical compound

Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.

<span class="mw-page-title-main">Dimanganese decacarbonyl</span> Chemical compound

Dimanganese decacarbonyl, which has the chemical formula Mn2(CO)10, is a binary bimetallic carbonyl complex centered around the first row transition metal manganese. The first reported synthesis of Mn2(CO)10 was in 1954 at Linde Air Products Company and was performed by Brimm, Lynch, and Sesny. Their hypothesis about, and synthesis of, dimanganese decacarbonyl was fundamentally guided by the previously known dirhenium decacarbonyl (Re2(CO)10), the heavy atom analogue of Mn2(CO)10. Since its first synthesis, Mn2(CO)10 has been use sparingly as a reagent in the synthesis of other chemical species, but has found the most use as a simple system on which to study fundamental chemical and physical phenomena, most notably, the metal-metal bond. Dimanganese decacarbonyl is also used as a classic example to reinforce fundamental topics in organometallic chemistry like d-electron count, the 18-electron rule, oxidation state, valency, and the isolobal analogy.

<span class="mw-page-title-main">Organozirconium and organohafnium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

<span class="mw-page-title-main">Organoiridium chemistry</span> Chemistry of organometallic compounds containing an iridium-carbon bond

Organoiridium chemistry is the chemistry of organometallic compounds containing an iridium-carbon chemical bond. Organoiridium compounds are relevant to many important processes including olefin hydrogenation and the industrial synthesis of acetic acid. They are also of great academic interest because of the diversity of the reactions and their relevance to the synthesis of fine chemicals.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

<span class="mw-page-title-main">Organomolybdenum chemistry</span> Chemistry of compounds with Mo-C bonds

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

<span class="mw-page-title-main">Iron tetracarbonyl dihydride</span> Chemical compound

Iron tetracarbonyl dihydride is the organometallic compound with the formula H2Fe(CO)4. This compound was the first transition metal hydride discovered. The complex is stable at low temperatures but decomposes rapidly at temperatures above –20 °C.

<span class="mw-page-title-main">Organocerium chemistry</span>

Organocerium chemistry is the science of organometallic compounds that contain one or more chemical bond between carbon and cerium. These compounds comprise a subset of the organolanthanides. Most organocerium compounds feature Ce(III) but some Ce(IV) derivatives are known.

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl dimer</span> Chemical compound

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below).

<span class="mw-page-title-main">Tetramesityldiiron</span> Chemical compound

Tetramesityldiiron is an organoiron compound with the formula Fe2(C6H2(CH3)3)4. It is a red, air-sensitive solid that is used as a precursor to other iron complexes. It adopts a centrosymmetric structure. The complex is a Lewis acid, forming monomeric adducts, e.g. Fe(C6H2(CH3)3)2pyridine2. The complex is prepared by treating ferrous halides with the Grignard reagent formed from mesityl bromide:

<span class="mw-page-title-main">Transition-metal allyl complex</span>

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

<span class="mw-page-title-main">Flyover complex</span>

In organometallic chemistry, a flyover complex features two metals bridged by the fragment OC(RC=CR)2. Some flyover complexes are symmetrical and some are not.

<span class="mw-page-title-main">Metallaborane</span>

In chemistry, a metallaborane is a compound that contains one or more metal atoms and one or more boron hydride. These compounds are related conceptually and often synthetically to the boron-hydride clusters by replacement of BHn units with metal-containing fragments. Often these metal fragments are derived from metal carbonyls or cyclopentadienyl complexes. Their structures can often be rationalized by polyhedral skeletal electron pair theory. The inventory of these compounds is large, and their structures can be quite complex.

Trimethylenemethane complexes are metal complexes of the organic compound trimethylenemethane. Several examples are known, and some have been employed in organic synthesis.

<span class="mw-page-title-main">Disulfidobis(tricarbonyliron)</span> Chemical compound

Disulfidobis(tricarbonyliron), or Fe2(μ-S2)(CO)6, is an organometallic molecule used as a precursor in the synthesis of iron-sulfur compounds. Popularized as a synthetic building block by Dietmar Seyferth, Fe2(μ-S2)(CO)6 is commonly used to make mimics of the H-cluster in [FeFe]-hydrogenase. Much of the reactivity of Fe2(μ-S2)(CO)6 proceeds through its sulfur-centered dianion, [Fe2(μ-S)2(CO)2]2-.

References

  1. Dettlaf, Gerd; Weiss, Erwin (1976). "Kristallstruktur, 1H-NMR- und Massenspektrum von Tricarbonylferracyclopentadien-tricarbonyleisen, C4H4Fe2(CO)6". Journal of Organometallic Chemistry. 108 (2): 213–223. doi:10.1016/S0022-328X(00)82143-9.
  2. Fehlhammer, W.P.; Stolzenberg, H. (1982). "Dinuclear Iron Compounds with Hydrocarbon Ligands". In Geoffrey Wilkinson; F. Gordon A. Stone; Edward W. Abel (eds.). Comprehensive Organometallic Chemistry. pp. 513–613. doi:10.1016/B978-008046518-0.00051-9. ISBN   9780080465180.
  3. Piero Pino; Irving Wender, eds. (1968). Organic Syntheses via Metal Carbonyls Volume 1. NY: Wiley Interscience.
  4. Bird, C. W. (1962). "Synthesis of Organic Compounds by Direct Carbonylation Reactions Using Metal Carbonyls". Chemical Reviews. 62 (4): 283–302. doi:10.1021/cr60218a001.
  5. Giordano, Roberto; Sappa, Enrico; Cauzzi, Daniele; Predieri, Giovanni; Tiripicchio, Antonio (1996). "Reactions of the 'ferrole' complex [Fe2(CO)6(C2Et2)2] with group 15 donor ligands and with alkynes. Stepwise formation and disengagement of tropones. Crystal and molecular structure of [Fe2(CO)5{(CEt)2 CO(CEt)2 CHCPH}]". Journal of Organometallic Chemistry. 511 (1–2): 263–271. doi:10.1016/0022-328X(95)05936-J.
  6. Fagan, Paul J. (1995). "Dinuclear Iron Compounds with Hydrocarbon Ligands". Comprehensive Organometallic Chemistry II. pp. 231–258. doi:10.1016/B978-008046519-7.00058-7. ISBN   9780080465197.