Spray-Up also known as chop method of creating fiberglass objects by spraying short strands of glass out of a pneumatic gun. This method is used often when one side of the finished product is not seen, or when large quantities of a product must be made cheaply and quickly with moderate strength requirements. [1] Corvette fenders and boat dinghies are commonly manufactured this way.
It is very different from the hand lay-up process. The difference comes from the application of the fibre and resin material to the mould. Spray-up is an open-moulding composites fabrication process where resin and reinforcements are sprayed onto a reusable mould. The resin and glass may be applied separately or simultaneously "chopped" in a combined stream from a chopper gun. Workers roll out the spray-up to compact the laminate. Wood, foam, or other core material may then be added, and a secondary spray-up layer embeds the core between the laminates. The part is then cured, cooled, and removed from the mould.
Applications include making of custom parts in low to medium volume quantities. Bathtubs, swimming pools, boat hulls, storage tanks, duct and air handling equipment, and furniture components are some of the commercial uses of this process.
The basic reinforcement material for this process is glass-fibre rovings, which are chopped to a length of 10 to 40 mm and then applied on the mould. For improved mechanical properties, a combination of fabric and chopped fibre layers is used. The most common material type is E-glass, but carbon and Kevlar rovings can also be used. Continuous strand mat, fabric, and various types of core materials are embedded by hand whenever required. The weight fraction of reinforcement in this process is typically 20 to 40% of the total weight of the part. The most common resin system used for the spray-up process is general purpose or DCDP polyester; isophthalic polyesters and vinyl ester resins are also sometimes used. Fast-reacting resins with a pot life of 30 to 40 minutes are typical. The resin often contains a significant amount of filler. The most common fillers are calcium carbonates and aluminium trihydrates. In filled resin systems, fillers replace some of the reinforcements; 5 to 25% filler is used by weight.
Steel, wood, GRP, and other materials are used as mould materials for prototyping purposes. The mould can be a male or female mould. To make shower bathtubs, a male mould is used. In the boating industry, a single-sided female mould made from FRP (fibre-reinforced plastic) is used to make yacht hulls. The outer shell of the mould is stiffened by a wood frame. The mould is made by taking the reversal of a male pattern. Several different hull sizes can be made using the same mould. The length of the mould is shortened or lengthened using inserts and mould secondaries such as windows, air vents, and propeller shaft tunnels.
The processing steps are very similar to those in hand lay-up. In this process, the release agent is first applied to the mould and then a layer of gelcoat is applied. The gelcoat is left for two hours, until it hardens. Once the gelcoat hardens, a spray gun is used to deposit the fibre resin mixture onto the surface of the mould. The spray gun chops the incoming continuous rovings (one or more rovings) to a predetermined length and impels it through the resin/catalyst mixture. Resin/catalyst mixing can take place inside the gun (gun mixing) or just in front of the gun. Gun mixing provides thorough mixing of resin and catalyst inside the gun and is preferred to minimize the health hazard concerns of the operator. In the other type, the catalyst is sprayed through two side nozzles into the resin envelope. Airless spray guns are becoming popular because they provide more controlled spray patterns and reduced emission of volatiles. In an airless system, hydraulic pressure is used to dispense the resin through special nozzles that break up the resin stream into small droplets which then become saturated with the reinforcements. In an air-atomized spray gun system, pressurized air is used to dispense the resin.
Once the material is sprayed on the mould, brushes or rollers are used to remove entrapped air as well as to ensure good fiber wetting. Fabric layers or continuous strand mats are added into the laminate, depending on performance requirements. The curing of the resin is done at room temperature. The curing of resin can take two to four hours, depending on the resin formulation. After curing, the part is removed from the mould and tested for finishing and structural requirements.
Employees in fibreglass resin plastics manufacturing are exposed to multiple hazards – high levels of styrene in lamination operations, noise in spray booths and grinding areas, and dust from grinding operations.
Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.
Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.
Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.
Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
Gelcoat or gel coat is a material used to provide a high-quality finish on the visible surface of a fibre-reinforced composite. The most common gelcoats are thermosetting polymers based on epoxy or unsaturated polyester resin chemistry. Gelcoats are modified resins which are applied to moulds in the liquid state. They are cured to form crosslinked polymers and are subsequently backed with thermoset polymer matrix composites which are often mixtures of polyester resin and fiberglass, or epoxy resin which is most commonly used with carbon fibre for higher specific strength.
Fiberglass molding is a process in which fiberglass reinforced resin plastics are formed into useful shapes.
Powder coating is a type of coating that is applied as a free-flowing, dry powder. Unlike conventional liquid paint, which is delivered via an evaporating solvent, powder coating is typically applied electrostatically and then cured under heat or with ultraviolet light. The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a thick, tough finish that is more durable than conventional paint. Powder coating is mainly used for coating of metal objects, particularly those subject to rough use. Advancements in powder coating technology like UV-curable powder coatings allow for other materials such as plastics, composites, carbon fiber, and MDF to be powder coated, as little heat or oven dwell time is required to process them.
Filament winding is a fabrication technique mainly used for manufacturing open (cylinders) or closed end structures. This process involves winding filaments under tension over a rotating mandrel. The mandrel rotates around the spindle while a delivery eye on a carriage traverses horizontally in line with the axis of the rotating mandrel, laying down fibers in the desired pattern or angle to the rotational axis. The most common filaments are glass or carbon and are impregnated with resin by passing through a bath as they are wound onto the mandrel. Once the mandrel is completely covered to the desired thickness, the resin is cured. Depending on the resin system and its cure characteristics, often the mandrel is autoclaved or heated in an oven or rotated under radiant heaters until the part is cured. Once the resin has cured, the mandrel is removed or extracted, leaving the hollow final product. For some products such as gas bottles, the 'mandrel' is a permanent part of the finished product forming a liner to prevent gas leakage or as a barrier to protect the composite from the fluid to be stored.
Polyester resins are synthetic resins formed by the reaction of dibasic organic acids and polyhydric alcohols. Maleic anhydride is a commonly used raw material with diacid functionality in unsaturated polyester resins. Unsaturated polyester resins are used in sheet moulding compound, bulk moulding compound and the toner of laser printers. Wall panels fabricated from polyester resins reinforced with fiberglass—so-called fiberglass reinforced plastic (FRP)—are typically used in restaurants, kitchens, restrooms and other areas that require washable low-maintenance walls. They are also used extensively in cured-in-place pipe applications. Departments of Transportation in the USA also specify them for use as overlays on roads and bridges. In this application they are known AS Polyester Concrete Overlays (PCO). These are usually based on isophthalic acid and cut with styrene at high levels—usually up to 50%. Polyesters are also used in anchor bolt adhesives though epoxy based materials are also used. Many companies have and continue to introduce styrene free systems mainly due to odor issues, but also over concerns that styrene is a potential carcinogen. Drinking water applications also prefer styrene free. Most polyester resins are viscous, pale coloured liquids consisting of a solution of a polyester in a reactive diluent which is usually styrene, but can also include vinyl toluene and various acrylates.
Bulk moulding compound (BMC), bulk moulding composite, or dough moulding compound (DMC), is a ready-to-mold, glass-fiber reinforced thermoset polymer material primarily used in compression moulding, as well as in injection moulding and transfer moulding. Typical applications include demanding electrical applications, corrosion resistant needs, appliance, automotive, and transit.
Sheet moulding compound (SMC) or sheet moulding composite is a ready to mould glass-fibre reinforced polyester material primarily used in compression moulding. The sheet is provided in rolls weighing up to 1000 kg. Alternatively the resin and related materials may be mixed on site when a producer wants greater control over the chemistry and filler.
A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.
FRP is a modern composite material of construction for chemical plant, pulp and paper mill, and food and pharmaceutical equipment like tanks and vessels. Chemical equipment that range in size from less than a metre to 20 metres are fabricated using FRP as material of construction.
Carbon fiber-reinforced polymers, carbon-fibre-reinforced polymers, carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic, also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
Vacuum bag moulding is the primary composite manufacturing process for producing laminated structures. It is common in the aerospace industry.
Z-pinning is a technique to insert reinforcing fibres along the Z-direction of continuous fibre-reinforced plastics. Z-pins can be made of metal or precured unidirectional composite fibres. It is designed for use within pre-preg technology; there is extensive experimental evidence that Z-pinning dramatically improves the resistance of the composite structure to delamination. The figure on the right shows a Z-pin inserted in between the fibres of the material. The pin spreads the fibres and creates an oval shaped gap that is filled with resin. The Z-pin prevents the composite from delamination. When a load is applied the cracks will typically form along the line of the opening.
Glass-filled polymer, is a mouldable composite material. It comprises short glass fibers in a matrix of a polymer material. It is used to manufacture a wide range of structural components by injection or compression moulding. It is an ideal glass alternative that offers flexibility in the part, chemical resistance, shatter resistance and overall better durability.
A Lay-Up process is a moulding process for composite materials, in which the final product is obtained by overlapping a specific number of different layers, usually made of continuous polymeric or ceramic fibres and a thermoset polymeric liquid matrix. It can be divided into Dry Lay-up and Wet Lay-Up, depending on whether the layers are pre-impregnated or not. Dry Lay-up is a common process in the aerospace industry, due to the possibility of obtaining complex shapes with good mechanical properties, characteristics required in this field. On the contrary, as Wet Lay-Up does not allow uni-directional fabrics, which have better mechanical properties, it is mainly adopted for all other areas, which in general have lower requirements in terms of performance.