Fibre Channel electrical interface

Last updated

The Fibre Channel electrical interface is one of two related Fibre Channel standards that can be used to physically interconnect computer devices. The other standard is a Fibre Channel optical interface, which is not covered in this article.

Contents

Fibre Channel signal characteristics

Fibre channel electrical signals are sent over a duplex differential interface. This usually consists of twisted-pair cables with a nominal impedance of 75 ohms (single-ended) or 150 ohms (differential). This is a genuine differential signalling system so no ground reference is carried through the cable, except for the shield. Signalling is AC-coupled, with the series capacitors located at the transmitter end of the link.

The definition of the Fibre Channel signalling voltage is complex. Eye-diagrams are defined for both the transmitter and receiver. There are many eye-diagram parameters which must all be met to be compliant with the standard. In simple terms, the transmitter circuit must output a signal with a minimum of 600 mV peak-to-peak differential, maximum 2000 mV peak-to-peak differential. A good signal looks rather like a sine-wave with a fundamental frequency of half the data rate, so 1 GHz for a typical system running at 2 gigabits per second.

The Bit-Error Rate (BER) objective for Fibre Channel systems is 1 in 1012 (1 bit in 1,000,000,000,000 bits). At 2 Gbit/s this equates to seven errors per hour. Therefore, this is a common event and the receiver circuitry must contain error-handling logic. In order to achieve such a low error-rate, jitter "budgets" are defined for the transmitter and cables.

Fibre Channel connector pinouts

There are various Fibre Channel connectors in use in the computer industry. Details of their pinouts are distributed between different official documents. The following sections describe the most common Fibre Channel pinouts with some comments about the purpose of their electrical signals.

The most familiar Fibre Channel connectors are cable connectors, used for interconnects between initiators and targets (usually disk enclosures). There are also "device connectors" that can be found on Fibre Channel disk-drives and backplanes of enclosures. The device connectors include pins for power and for setting disk options.

9-pin "DE-9" cable connector

PinSignal nameComments
1+OUTFibre channel output
2+5VOptional
3Module Fault DetectOptional
4Reserved
5+INFibre channel input
6-OUTFibre channel output
7Output DisableOptional
8GNDOptional, return for pin 2
9-INFibre channel input

Optional pins 2, 3, 7, and 8 are intended for use with an external optical converter. This is often called a Media Interface Assembly (MIA).

Fibre channel DE-9 connectors often have only the 4 required contacts installed. Note that they are the four outermost contacts i.e. the same as used for Token Ring, this is an easy way to tell a fibre channel cable from an RS-232 cable.

8-pin "HSSDC" cable connector (High Speed Serial Data Connection)

HBA FC card with electrical connector Fc electrical.jpg
HBA FC card with electrical connector
PinSignal nameComments
1+OUTFibre channel output
2GNDOptional, return for pin 7
3-OUTFibre channel output
4Module Fault DetectOptional
5Output DisableOptional
6-INFibre channel input
7+5VOptional
8+INFibre channel input

Optional pins 2, 4, 5, and 7 are intended for use with an external optical converter. This is often called a Media Interface Assembly (MIA).

7-pin "HSSDC2" cable connector (High Speed Serial Data Connection)

PinSignal nameComments
1GND
2-OUTFibre channel output
3+OUTFibre channel output
4GND
5+INFibre channel input
6-INFibre channel input
7GND

40-pin "SCA-2" disk connector

Although SCA-2 is the official name for this connector, it is often called SCA-40 to distinguish it by its pin count from other similar connectors.

Disk with SCA-2 connector. Fc-disk.jpg
Disk with SCA-2 connector.
PinSignal nameComments
1-EN Bypass Port 1Output driven high when port 1 is operating correctly
2+12V
3+12V
4+12V
5-Parallel ESIInput to allow ESI operation using the SELx pins
6-Drive Present
7ACTLEDOutput to drive the activity LED cathode
8Power Control
9START1Input to control spin-up behavior (see the Disk options section)
10START2Input to control spin-up behavior (see the Disk options section)
11-EN Bypass Port 2Output driven high when port 2 is operating correctly
12SEL6Device ID bit 6 / ESI write clock
13SEL5Device ID bit 5 / ESI read clock
14SEL4Device ID bit 4 / ESI acknowledge clock
15SEL3Device ID bit 3 / ESI bit 3
16FLTLEDOutput to drive the fault LED cathode
17DEVCTRL2Input to control interface speed (see the Disk options section)
18DEVCTRL1Input to control interface speed (see the Disk options section)
19+5V
20+5V
21+12V Charge
22GND (12V)
23GND (12V)
24+IN1Fibre channel input
25-IN1Fibre channel input
26GND (12V)
27+IN2Fibre channel input
28-IN2Fibre channel input
29GND (12V)
30+OUT1Fibre channel output
31-OUT1Fibre channel output
32GND (5V)
33+OUT2Fibre channel output
34-OUT2Fibre channel output
35GND (5V)
36SEL2Device ID bit 2 / ESI bit 2
37SEL1Device ID bit 1 / ESI bit 1
38SEL0Device ID bit 0 / ESI bit 0
39DEVCTRL0Input to control interface speed (see the Disk options section)
40+5V CHARGE

Disk options

Some of the input signals to a Fibre Channel disk are used to control options, as follows:

START options - if all the disks in an enclosure spin-up immediately on power-on, this can overload the power-supply. Two methods are available to avoid that problem:

START1START2Spin-up behaviour
00Automatic, immediate
01Wait for Start Unit SCSI command
10Staggered, delayed depending on loop address
11Reserved

DEVCTRL options - a disk that has the wrong interface speed can cause serious problems if it is inserted into an enclosure. That problem is avoided by providing three input pins to the disk that define the interface speed at which it will operate:

DEVCTRLx valueInterface speed
0-4Reserved
54 GB/s
62 GB/s
71 GB/s

Related Research Articles

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997. The RS-232 standard had been commonly used in computer serial ports and is still widely used in industrial communication devices.

SCSI Set of computer and peripheral connection standards

Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices. The SCSI standards define commands, protocols, electrical, optical and logical interfaces. The SCSI standard defines command sets for specific peripheral device types; the presence of "unknown" as one of these types means that in theory it can be used as an interface to almost any device, but the standard is highly pragmatic and addressed toward commercial requirements. The initial Parallel SCSI was most commonly used for hard disk drives and tape drives, but it can connect a wide range of other devices, including scanners and CD drives, although not all controllers can handle all devices.

Serial port Communication interface transmitting information sequentially

In computing, a serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.

PCI Express Computer expansion bus standard

PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.

Serial ATA Computer bus interface for storage devices

Serial ATA is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives, optical drives, and solid-state drives. Serial ATA succeeded the earlier Parallel ATA (PATA) standard to become the predominant interface for storage devices.

Serial communication Type of data transfer

In telecommunication and data transmission, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.

DMX512 Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control lighting and effects. It was originally intended as a standardized method for controlling stage lighting dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It quickly became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights.

Serial Storage Architecture (SSA) was a serial transport protocol used to attach disk drives to server computers.

VGA connector 15-pin video connector

The Video Graphics Array (VGA) connector is a standard connector used for computer video output. Originating with the 1987 IBM PS/2 and its VGA graphics system, the 15-pin connector went on to become ubiquitous on PCs, as well as many monitors, projectors and high-definition television sets.

Pinout

In electronics, a pinout is a cross-reference between the contacts, or pins, of an electrical connector or electronic component, and their functions. "Pinout" now supersedes the term "basing diagram" that was the standard terminology used by the manufacturers of vacuum tubes and the RMA. The RMA started its standardization in 1934, collecting and correlating tube data for registration at what was to become the EIA. The EIA now has many sectors reporting to it, and sets what are known as EIA standards where all registered pinouts and registered jacks can be found.

RS-485, also known as TIA-485(-A) or EIA-485, is a standard defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

I²S, is an electrical serial bus interface standard used for connecting digital audio devices together. It is used to communicate PCM audio data between integrated circuits in an electronic device. The I²S bus separates clock and serial data signals, resulting in simpler receivers than those required for asynchronous communications systems that need to recover the clock from the data stream. Alternatively I²S is spelled I2S or IIS. Despite the similar name, I²S is unrelated to the bidirectional I²C (IIC) bus.

A breakout box is a piece of electrical test equipment used to support integration testing, expedite maintenance, and streamline the troubleshooting process at the system, subsystem, and component-level by simplifying the access to test signals. Breakout boxes span a wide spectrum of functionality. Some serve to break out every signal connection coming into a unit, while others breakout only specific signals commonly monitored for either testing or troubleshooting purposes. Some have electrical connectors, and others have optical fiber connectors.

Single Connector Attachment

Single Connector Attachment, or SCA, is a type of connection for the internal cabling of Parallel SCSI systems. There are two versions of this connector: the SCA-1, which is deprecated, and SCA-2, which is the most recent standard. In addition there are Single-Ended (SE) and Low Voltage Differential (LVD) types of the SCA.

PS/2 port 6-pin mini-DIN connector for connecting keyboards and mice to a PC compatible computer

The PS/2 port is a 6-pin mini-DIN connector used for connecting keyboards and mice to a PC compatible computer system. Its name comes from the IBM Personal System/2 series of personal computers, with which it was introduced in 1987. The PS/2 mouse connector generally replaced the older DE-9 RS-232 "serial mouse" connector, while the PS/2 keyboard connector replaced the larger 5-pin/180° DIN connector used in the IBM PC/AT design. The PS/2 keyboard port is electrically and logically identical to the IBM AT keyboard port, differing only in the type of electrical connector used. The PS/2 platform introduced a second port with the same design as the keyboard port for use to connect a mouse; thus the PS/2-style keyboard and mouse interfaces are electrically similar and employ the same communication protocol. However, unlike the otherwise similar Apple Desktop Bus connector used by Apple, a given system's keyboard and mouse port may not be interchangeable since the two devices use different sets of commands and the device drivers generally are hard-coded to communicate with each device at the address of the port that is conventionally assigned to that device.

IEEE 1355

IEEE Standard 1355-1995, IEC 14575, or ISO 14575 is a data communications standard for Heterogeneous Interconnect (HIC).

A SCSI connector is used to connect computer parts that use a system called SCSI to communicate with each other. Generally, two connectors, designated male and female, plug together to form a connection which allows two components, such as a computer and a disk drive, to communicate with each other. SCSI connectors can be electrical connectors or optical connectors. There have been a large variety of SCSI connectors in use at one time or another in the computer industry. Twenty-five years of evolution and three major revisions of the standards resulted in requirements for Parallel SCSI connectors that could handle an 8, 16 or 32 bit wide bus running at 5, 10 or 20 megatransfer/s, with conventional or differential signaling. Serial SCSI added another three transport types, each with one or more connector types. Manufacturers have frequently chosen connectors based on factors of size, cost, or convenience at the expense of compatibility.

Parallel SCSI

Parallel SCSI is the earliest of the interface implementations in the SCSI family. SPI is a parallel bus; there is one set of electrical connections stretching from one end of the SCSI bus to the other. A SCSI device attaches to the bus but does not interrupt it. Both ends of the bus must be terminated.

Camera Link is a serial communication protocol standard designed for camera interface applications based on the National Semiconductor interface Channel-link. It was designed for the purpose of standardizing scientific and industrial video products including cameras, cables and frame grabbers. The standard is maintained and administered by the Automated Imaging Association or AIA, the global machine vision industry's trade group.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA, Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses with which they cannot communicate natively, such as IEEE 1394, USB, SCSI, NVMe and Thunderbolt.