Field (video)

Last updated

In video, a field is one of the many still images displayed sequentially to create the impression of motion on the screen. Normally, two fields comprise one video frame, in what is known as 2:1 interlacing. 3:1, 4:1 and 5:1 interlacing also exist. [1] [2] When the fields are displayed on a video monitor they are "interlaced" so that the content of one field will be used on all of the odd-numbered lines on the screen, and the other field will be displayed on the even lines. Converting fields to a still frame image requires a process called deinterlacing, in which the missing lines are duplicated or interpolated to recreate the information that would have been contained in the discarded field. Since each field contains only half of the information of a full frame, however, deinterlaced images do not have the resolution of a full frame. Sometimes in interlaced video a field is called a frame which can lead to confusion. [3]

Contents

To increase the resolution of video images, new schemes have been created that capture full-frame images for each frame. Video composed of such frames is called progressive scan video.

Video shot with a standard video camera format such as S-VHS or Mini-DV is often interlaced when created. In contrast, video shot with a film-based camera is almost always progressive. Free-to-air analog TV was mostly broadcast as interlaced material because the trade-off of spatial resolution for frame rate reduced flickering on cathode-ray tube (CRT) televisions. High-definition digital television (see: HDTV) today can be broadcast terrestrially or distributed through cable systems in either interlaced (1080i) or progressive scan formats (720p or 1080p). Most prosumer camcorders can record in progressive scan formats.

In video editing, knowing which of the two (odd or even) fields is "dominant." Selecting edit points on the wrong field can result in a "flash" at each edit point, and playing the video fields in reverse order creates a flickering image.

See also

Related Research Articles

<span class="mw-page-title-main">Digital video</span> Digital electronic representation of moving visual images

Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises a series of digital images displayed in rapid succession, usually at 24, 25, 30, or 60 frames per second. Digital video has many advantages such as easy copying, multicasting, sharing and storage.

<span class="mw-page-title-main">Video</span> Electronic moving image

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode-ray tube (CRT) systems, which, in turn, were replaced by flat-panel displays of several types.

<span class="mw-page-title-main">Interlaced video</span> Technique for doubling the perceived frame rate of a video display

Interlaced video is a technique for doubling the perceived frame rate of a video display without consuming extra bandwidth. The interlaced signal contains two fields of a video frame captured consecutively. This enhances motion perception to the viewer, and reduces flicker by taking advantage of the characteristics of the human visual system.

Progressive scanning is a format of displaying, storing, or transmitting moving images in which all the lines of each frame are drawn in sequence. This is in contrast to interlaced video used in traditional analog television systems where only the odd lines, then the even lines of each frame are drawn alternately, so that only half the number of actual image frames are used to produce video. The system was originally known as "sequential scanning" when it was used in the Baird 240 line television transmissions from Alexandra Palace, United Kingdom in 1936. It was also used in Baird's experimental transmissions using 30 lines in the 1920s. Progressive scanning became universally used in computer screens beginning in the early 21st century.

<span class="mw-page-title-main">Telecine</span> Process for broadcasting content stored on film stock

Telecine, or TK, is the process of transferring film into video and is performed in a color suite. The term is also used to refer to the equipment used in this post-production process.

In video technology, 24p refers to a video format that operates at 24 frames per second frame rate with progressive scanning. Originally, 24p was used in the non-linear editing of film-originated material. Today, 24p formats are being increasingly used for aesthetic reasons in image acquisition, delivering film-like motion characteristics. Some vendors advertise 24p products as a cheaper alternative to film acquisition.

<span class="mw-page-title-main">Display resolution</span> Width and height of a display in pixels

The display resolution or display modes of a digital television, computer monitor, or other display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode-ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

Deinterlacing is the process of converting interlaced video into a non-interlaced or progressive form. Interlaced video signals are commonly found in analog television, VHS, Laserdisc, digital television (HDTV) when in the 1080i format, some DVD titles, and a smaller number of Blu-ray discs.

HD-MAC was a broadcast television standard proposed by the European Commission in 1986, as part of Eureka 95 project. It belongs to the MAC - Multiplexed Analogue Components standard family. It is an early attempt by the EEC to provide High-definition television (HDTV) in Europe. It is a complex mix of analogue signal, multiplexed with digital sound, and assistance data for decoding (DATV). The video signal was encoded with a modified D2-MAC encoder.

<span class="mw-page-title-main">HDV</span> Magnetic tape-based HD videocassette format for camcorders

HDV is a format for recording of high-definition video on DV videocassette tape. The format was originally developed by JVC and supported by Sony, Canon, and Sharp. The four companies formed the HDV Consortium in September 2003.

<span class="mw-page-title-main">720p</span> Video resolution

720p is a progressive HD signal format with 720 horizontal lines/1280 columns and an aspect ratio (AR) of 16:9, normally known as widescreen HD (1.78:1). All major HD broadcasting standards include a 720p format, which has a resolution of 1280×720.

1080i is a term used in high-definition television (HDTV) and video display technology. It means a video mode with 1080 lines of vertical resolution. The "i" stands for interlaced scanning method. This format was once a standard in HDTV. It was particularly used for broadcast television. This is because it can deliver high-resolution images without needing excessive bandwidth. This format is used in the SMPTE 292M standard.

<span class="mw-page-title-main">Flicker fixer</span> Video de-interlacer

A flicker fixer or scan doubler is a piece of computer hardware that de-interlaces an output video signal. The flicker fixer accomplishes this by adjusting the timing of the natively interlaced video signal to suit the needs of a progressive display for example a CRT computer monitor. Flicker fixers in essence create a progressive frame of video from two interlaced fields of video.

Film-out is the process in the computer graphics, video production and filmmaking disciplines of transferring images or animation from videotape or digital files to a traditional film print. Film-out is a broad term that encompasses the conversion of frame rates, color correction, as well as the actual printing, also called scannior recording.

High-definition video is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 vertical scan lines or 576 vertical lines (Europe) is considered high-definition. 480 scan lines is generally the minimum even though the majority of systems greatly exceed that. Images of standard resolution captured at rates faster than normal, by a high-speed camera may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as filmizing.

Progressive segmented Frame is a scheme designed to acquire, store, modify, and distribute progressive scan video using interlaced equipment.

Flicker-free is a term given to video displays, primarily cathode ray tubes, operating at a high refresh rate to reduce or eliminate the perception of screen flicker. For televisions, this involves operating at a 100 Hz or 120 Hz hertz field rate to eliminate flicker, compared to standard televisions that operate at 50 Hz or 60 Hz (NTSC), most simply done by displaying each field twice, rather than once. For computer displays, this is usually a refresh rate of 70–90 Hz, sometimes 100 Hz or higher. This should not be confused with motion interpolation, though they may be combined – see implementation, below.

Low-definition television (LDTV) refers to TV systems that have a lower screen resolution than standard-definition television systems. The term is usually used in reference to digital television, in particular when broadcasting at the same resolution as low-definition analog television systems. Mobile DTV systems usually transmit in low definition, as do all slow-scan television systems.

Television standards conversion is the process of changing a television transmission or recording from one video system to another. Converting video between different numbers of lines, frame rates, and color models in video pictures is a complex technical problem. However, the international exchange of television programming makes standards conversion necessary so that video may be viewed in another nation with a differing standard. Typically video is fed into video standards converter which produces a copy according to a different video standard. One of the most common conversions is between the NTSC and PAL standards.

References

  1. Television Technology in Transition: Includes Selected Papers on Television Technology Presented During the 22nd Annual SMPTE Television Conference in Nashville, Tennessee, January 29-30, 1988. Society of Motion Picture and Television Engineers. 1988. ISBN   978-0-940690-14-1.
  2. High Definition Television: Hi-Vision Technology. Springer. 6 December 2012. ISBN   978-1-4684-6536-5.
  3. "InfoWorld". 11 June 1979.