Finite potential well

Last updated

The finite potential well (also known as the finite square well) is a concept from quantum mechanics. It is an extension of the infinite potential well, in which a particle is confined to a "box", but one which has finite potential "walls". Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box. In the quantum interpretation, there is a non-zero probability of the particle being outside the box even when the energy of the particle is less than the potential energy barrier of the walls (cf quantum tunnelling).

Contents

Particle in a 1-dimensional potential well

For the 1-dimensional case on the x-axis, the time-independent Schrödinger equation can be written as:

where

For the case of the particle in a 1-dimensional box of length L, the potential is outside the box, and zero for x between and . The wavefunction is considered to be made up of different wavefunctions at different ranges of x, depending on whether x is inside or outside of the box. Therefore, the wavefunction is defined such that:

Inside the box

For the region inside the box, V(x) = 0 and Equation 1 reduces to Letting the equation becomes

This is a well-studied differential equation and eigenvalue problem with a general solution of Hence,

Here, A and B can be any complex numbers, and k can be any real number.

Outside the box

For the region outside of the box, since the potential is constant, and equation 1 becomes:

There are two possible families of solutions, depending on whether E is less than (the particle is bound in the potential) or E is greater than (the particle is free).

For a free particle, , and letting produces with the same solution form as the inside-well case:

This analysis will focus on the bound state, where . Letting produces where the general solution is exponential:

Similarly, for the other region outside the box:

Now in order to find the specific solution for the problem at hand, we must specify the appropriate boundary conditions and find the values for A, B, F, G, H and I that satisfy those conditions.

Finding wavefunctions for the bound state

Solutions to the Schrödinger equation must be continuous, and continuously differentiable. [1] These requirements are boundary conditions on the differential equations previously derived, that is, the matching conditions between the solutions inside and outside the well.

In this case, the finite potential well is symmetrical, so symmetry can be exploited to reduce the necessary calculations.

Summarizing the previous sections: where we found , , and to be:

We see that as goes to , the term goes to infinity. Likewise, as goes to , the term goes to infinity. In order for the wave function to be square integrable, we must set , and we have: and

Next, we know that the overall function must be continuous and differentiable. In other words, the values of the functions and their derivatives must match up at the dividing points:

These equations have two sorts of solutions, symmetric, for which and , and antisymmetric, for which and . For the symmetric case we get so taking the ratio gives

Roots of the equation for the quantized energy levels Finite-well-roots.gif
Roots of the equation for the quantized energy levels

Similarly for the antisymmetric case we get

Recall that both and depend on the energy. What we have found is that the continuity conditions cannot be satisfied for an arbitrary value of the energy; because that is a result of the infinite potential well case. Thus, only certain energy values, which are solutions to one or either of these two equations, are allowed. Hence we find that the energy levels of the system below are discrete; the corresponding eigenfunctions are bound states . (By contrast, for the energy levels above are continuous. [2] )

The energy equations cannot be solved analytically. Nevertheless, we will see that in the symmetric case, there always exists at least one bound state, even if the well is very shallow. [3] Graphical or numerical solutions to the energy equations are aided by rewriting them a little and it should be mentioned that a nice approximation method has been found by Lima which works for any pair of parameters and . [4] If we introduce the dimensionless variables and , and note from the definitions of and that , where , the master equations read

In the plot to the right, for , solutions exist where the blue semicircle intersects the purple or grey curves ( and ). Each purple or grey curve represents a possible solution, within the range . The total number of solutions, , (i.e., the number of purple/grey curves that are intersected by the blue circle) is therefore determined by dividing the radius of the blue circle, , by the range of each solution and using the floor or ceiling functions: [5]

In this case there are exactly three solutions, since .

Solutions of the finite square well Finite-well-solutions.gif
Solutions of the finite square well

and , with the corresponding energies If we want, we can go back and find the values of the constants in the equations now (we also need to impose the normalisation condition). On the right we show the energy levels and wave functions in this case (where ).

We note that however small is (however shallow or narrow the well), there is always at least one bound state.

Two special cases are worth noting. As the height of the potential becomes large, , the radius of the semicircle gets larger and the roots get closer and closer to the values , and we recover the case of the infinite square well.

The other case is that of a very narrow, deep well - specifically the case and with fixed. As it will tend to zero, and so there will only be one bound state. The approximate solution is then , and the energy tends to . But this is just the energy of the bound state of a Delta function potential of strength , as it should be.

A simpler graphical solution for the energy levels can be obtained by normalizing the potential and the energy through multiplication by . The normalized quantities are giving directly the relation between the allowed couples as [6] for the even and odd parity wave functions, respectively. In the previous equations only the positive derivative parts of the functions have to be considered. The chart giving directly the allowed couples is reported in the figure.

FigureV0E QuantumWell.png

Unbound states

If we solve the time-independent Schrödinger equation for an energy , the solutions will be oscillatory both inside and outside the well. Thus, the solution is never square integrable; that is, it is always a non-normalizable state. This does not mean, however, that it is impossible for a quantum particle to have energy greater than , it merely means that the system has continuous spectrum above . The non-normalizable eigenstates are close enough to being square integrable that they still contribute to the spectrum of the Hamiltonian as an unbounded operator. [7]

Asymmetric well

Consider a one-dimensional asymmetric potential well given by the potential [8] with . The corresponding solution for the wave function with is found to be and

The energy levels are determined once is solved as a root of the following transcendental equation where Existence of root to above equation is not always guaranteed, for example, one can always find a value of so small, that for given values of and , there exists no discrete energy level. The results of symmetrical well is obtained from above equation by setting .

Particle in a spherical potential well

Consider the following spherical potential well where is the radius from the origin. The solution for the wavefunction with zero angular momentum () and with an energy is given by [8] satisfying the condition

This equation does not always have a solution indicating that in some cases, there are no bound states. The minimum depth of the potential well for which the bound state first appears at is given by

which increases with decreasing well radius . Thus, bound states are not possible if the well is sufficiently shallow and narrow. For well depth slightly exceeding the minimum value, i.e., for , the ground state energy (since we are considering case) is given by [9]

Spherically symmetric annular well

The results above can be used to show that, as to the one-dimensional case, there is two bound states in a spherical cavity, as spherical coordinates make equivalent the radius at any direction.

The ground state (n = 1) of a spherically symmetric potential will always have zero orbital angular momentum (ℓ = n−1), and the reduced wave function satisfies the equation where is the radial part of the wave function. Notice that for (n = 1) angular part is constant ( = 0).

This is identical to the one-dimensional equation, except for the boundary conditions. As before,

The energy levels for are determined once is solved as a root of the following transcendental equation where

Existence of root to above equation is always guaranteed. The results are always with spherical symmetry. It fulfils the condition where the wave does not find any potential inside the sphere: .

Different differential equation lay on when ℓ ≠0, so as above titles, here it is:

The solution can be rationalized by some changes of variable and function to rise a Bessel like differential equation, which solution is:

where , and are Bessel, Newman and Hankel spherical functions respectively, and could be rewritten as function of standard Bessel function.

The energy levels for

are determined once is solved as a root of the following transcendental equation

where

Also this two transcendental equations are solutions: and also,

Existence of roots to above equations are always guaranteed. The results are always with spherical symmetry.

See also

Related Research Articles

<span class="mw-page-title-main">Particle in a box</span> Mathematical model in quantum mechanics

In quantum mechanics, the particle in a box model describes the movement of a free particle in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a particle trapped inside a large box can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow, quantum effects become important. The particle may only occupy certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as spatial nodes.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the Swiss physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

<span class="mw-page-title-main">Particle in a spherically symmetric potential</span> Quantum mechanical model

In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space. A particle in a spherically symmetric potential will behave accordingly to said potential and can therefore be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.

<span class="mw-page-title-main">Wave packet</span> Short "burst" or "envelope" of restricted wave action that travels as a unit

In physics, a wave packet is a short burst of localized wave action that travels as a unit, outlined by an envelope. A wave packet can be analyzed into, or can be synthesized from, a potentially-infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Any signal of a limited width in time or space requires many frequency components around a center frequency within a bandwidth inversely proportional to that width; even a gaussian function is considered a wave packet because its Fourier transform is a "packet" of waves of frequencies clustered around a central frequency. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant or it may change while propagating.

In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice. It is a generalization of the free electron model, which assumes zero potential inside the lattice.

<span class="mw-page-title-main">Fine structure</span> Details in the emission spectrum of an atom

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In mathematical physics, the WKB approximation or WKB method is a method for finding approximate solutions to linear differential equations with spatially varying coefficients. It is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction is recast as an exponential function, semiclassically expanded, and then either the amplitude or the phase is taken to be changing slowly.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

<span class="mw-page-title-main">Rectangular potential barrier</span> Area, where a potential exhibits a local maximum

In quantum mechanics, the rectangularpotential barrier is a standard one-dimensional problem that demonstrates the phenomena of wave-mechanical tunneling and wave-mechanical reflection. The problem consists of solving the one-dimensional time-independent Schrödinger equation for a particle encountering a rectangular potential energy barrier. It is usually assumed, as here, that a free particle impinges on the barrier from the left.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

In quantum mechanics and quantum field theory, a Schrödinger field, named after Erwin Schrödinger, is a quantum field which obeys the Schrödinger equation. While any situation described by a Schrödinger field can also be described by a many-body Schrödinger equation for identical particles, the field theory is more suitable for situations where the particle number changes.

The Gamow factor, Sommerfeld factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow or after Arnold Sommerfeld, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the Sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.

An LC circuit can be quantized using the same methods as for the quantum harmonic oscillator. An LC circuit is a variety of resonant circuit, and consists of an inductor, represented by the letter L, and a capacitor, represented by the letter C. When connected together, an electric current can alternate between them at the circuit's resonant frequency:

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In quantum mechanics, resonance cross section occurs in the context of quantum scattering theory, which deals with studying the scattering of quantum particles from potentials. The scattering problem deals with the calculation of flux distribution of scattered particles/waves as a function of the potential, and of the state of the incident particle. For a free quantum particle incident on the potential, the plane wave solution to the time-independent Schrödinger wave equation is:

References

  1. Hall 2013 Proposition 5.1
  2. Hall 2013 Section 5.5
  3. Hall 2013 Proposition 5.3
  4. Lima, Fabio M. S. (2020). "A simpler graphical solution and an approximate formula for energy eigenvalues in finite square quantum wells". Am. J. Phys. 88 (11): 1019. doi:10.1119/10.0001694.
  5. Williams, Floyd (2003). Topics in Quantum Mechanics. Springer Science+Business Media. p. 57. ISBN   978-1-4612-6571-9.
  6. Chiani, M. (2016). "A chart for the energy levels of the square quantum well". arXiv: 1610.04468 [physics.gen-ph].
  7. Hall 2013 Section 5.5 and Exercise 4 in Chapter 3
  8. 1 2 Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier.
  9. Perelomov, A. M., & Zeldovich, Ya. B. (1998). Quantum Mechanics, Selected Topics. World Scientific.

Further reading