Finsler's lemma

Last updated

Finsler's lemma is a mathematical result named after Paul Finsler. It states equivalent ways to express the positive definiteness of a quadratic form Q constrained by a linear form L. Since it is equivalent to another lemmas used in optimization and control theory, such as Yakubovich's S-lemma, [1] Finsler's lemma has been given many proofs and has been widely used, particularly in results related to robust optimization and linear matrix inequalities.

Contents

Statement of Finsler's lemma

Let xRn, and QRn x n and LRn x n be symmetric matrices. The following statements are equivalent: [2]

Variants

Non-Strict Finsler Lemma

When the matrix L is indefinite, replacing strict inequalities with non-strict ones still maintains the equivalence between the statements of Finsler's lemma. However, if L is not indefinite, additional assumptions are necessary to ensure equivalence between the statements. [3]

Extra equivalences when L is positive semi-definite

In the particular case that L is positive semi-definite, it is possible to decompose it as L = BTB. The following statements, which are also referred as Finsler's lemma in the literature, are equivalent: [4]

Matrix Finsler's lemma

There is also a variant of Finsler's lemma for quadratic matrix inequalities, known as matrix Finsler's lemma, which states that the following statements are equivalent for symmetric matrices Q and L belonging to R(l+k)x(l+k): [5] [6]

under the assumption that

and

satisfy the following assumptions:

  1. Q12 = 0 and Q22 < 0,
  2. L22 < 0, and L11 - L12L22+L12 = 0, and
  3. there exists a matrix G such that Q11 + GTQ22G > 0 and L22G = L12T.

Generalizations

Projection lemma

The equivalence between the following statements is also common on the literature of linear matrix inequalities, and is known as the Projection Lemma (or also as Elimination Lemma): [7]

This lemma generalizes one of the Finsler's lemma variants by including an extra matrix C and an extra constraint involving this extra matrix.

It is interesting to note that if the strict inequalities are changed to non-strict inequalities, the equivalence does not hold anymore: only the second statement imply the first statement. Nevertheless, it still possible to obtain the equivalence between the statements under extra assumptions. [8]

Robust version

Finsler's lemma also generalizes for matrices Q and B depending on a parameter s within a set S. In this case, it is natural to ask if the same variable μ (respectively X) can satisfy for all (respectively, ). If Q and B depends continuously on the parameter s, and S is compact, then this is true. If S is not compact, but Q and B are still continuous matrix-valued functions, then μ and X can be guaranteed to be at least continuous functions. [9]

Applications

Data-driven control

The matrix variant of Finsler lemma has been applied to the data-driven control of Lur'e systems [5] and in a data-driven robust linear matrix inequality-based model predictive control scheme. [10]

S-Variable approach to robust control of linear dynamical systems

Finsler's lemma can be used to give novel linear matrix inequality (LMI) characterizations to stability and control problems. [4] The set of LMIs stemmed from this procedure yields less conservative results when applied to control problems where the system matrices has dependence on a parameter, such as robust control problems and control of linear-parameter varying systems. [11] This approach has recently been called as S-variable approach [12] [13] and the LMIs stemming from this approach are known as SV-LMIs (also known as dilated LMIs [14] ).

Sufficient condition for universal stabilizability of non-linear systems

A nonlinear system has the universal stabilizability property if every forward-complete solution of a system can be globally stabilized. By the use of Finsler's lemma, it is possible to derive a sufficient condition for universal stabilizability in terms of a differential linear matrix inequality. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Autocorrelation</span> Correlation of a signal with a time-shifted copy of itself, as a function of shift

Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.

<span class="mw-page-title-main">Quaternion group</span> Non-abelian group of order eight

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, particularly linear algebra, an orthonormal basis for an inner product space with finite dimension is a basis for whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection is also orthonormal, and every orthonormal basis for arises in this fashion. An orthonormal basis can be derived from an orthogonal basis via normalization. The choice of an origin and an orthonormal basis forms a coordinate frame known as an orthonormal frame.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

<span class="mw-page-title-main">Conformal group</span>

In mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space.

In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem, is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof Thorin.

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

In control theory, the linear–quadratic–Gaussian (LQG) control problem is one of the most fundamental optimal control problems, and it can also be operated repeatedly for model predictive control. It concerns linear systems driven by additive white Gaussian noise. The problem is to determine an output feedback law that is optimal in the sense of minimizing the expected value of a quadratic cost criterion. Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random vector.

In convex optimization, a linear matrix inequality (LMI) is an expression of the form

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

The Kalman–Yakubovich–Popov lemma is a result in system analysis and control theory which states: Given a number , two n-vectors B, C and an n x n Hurwitz matrix A, if the pair is completely controllable, then a symmetric matrix P and a vector Q satisfying

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

In functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space.

Baranyi and Yam proposed the TP model transformation as a new concept in quasi-LPV (qLPV) based control, which plays a central role in the highly desirable bridging between identification and polytopic systems theories. It is also used as a TS (Takagi-Sugeno) fuzzy model transformation. It is uniquely effective in manipulating the convex hull of polytopic forms, and, hence, has revealed and proved the fact that convex hull manipulation is a necessary and crucial step in achieving optimal solutions and decreasing conservativeness in modern linear matrix inequality based control theory. Thus, although it is a transformation in a mathematical sense, it has established a conceptually new direction in control theory and has laid the ground for further new approaches towards optimality.

References

  1. Zi-Zong, Yan; Jin-Hai, Guo (2010). "Some Equivalent Results with Yakubovich's S-Lemma". SIAM Journal on Control and Optimization. 48 (7): 4474–4480. doi:10.1137/080744219.
  2. Finsler, Paul (1936). "Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen". Commentarii Mathematici Helvetici . 9 (1): 188–192. doi:10.1007/BF01258188. S2CID   121751764.
  3. Meijer, Tomas; Scheres, Koen; Eijnden, Sebastiaan van den; Holicki, Tobias; Scherer, Carsten; Heemels, Maurice (2024). "A Unified Non-Strict Finsler Lemma". IEEE Control Systems Letters. 8 (8): 1955–1960. arXiv: 2403.10306 . doi:10.1109/LCSYS.2024.3415473. ISSN   2475-1456.
  4. 1 2 de Oliveira, Maurício C.; Skelton, Robert E. (2001). "Stability tests for constrained linear systems". In Moheimani, S. O. Reza (ed.). Perspectives in robust control . London: Springer-Verlag. pp.  241–257. ISBN   978-1-84628-576-9.
  5. 1 2 van Waarde, Henk J.; Kanat Camlibel, M. (2021-12-14). "A Matrix Finsler's Lemma with Applications to Data-Driven Control". 2021 60th IEEE Conference on Decision and Control (CDC) (PDF). Austin, TX, USA: IEEE. pp. 5777–5782. doi:10.1109/CDC45484.2021.9683285. ISBN   978-1-6654-3659-5. S2CID   246479914.
  6. van Waarde, Henk J.; Camlibel, M. Kanat; Eising, Jaap; Trentelman, Harry L. (2023-08-31). "Quadratic Matrix Inequalities with Applications to Data-Based Control". SIAM Journal on Control and Optimization. 61 (4): 2251–2281. arXiv: 2203.12959 . doi:10.1137/22M1486807. ISSN   0363-0129. S2CID   247627787.
  7. Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. (1994-01-01). Linear Matrix Inequalities in System and Control Theory. Studies in Applied and Numerical Mathematics. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611970777. ISBN   9780898714852. S2CID   27307648.
  8. Meijer, T. J.; Holicki, T.; Eijnden, S. J. A. M. van den; Scherer, C. W.; Heemels, W. P. M. H. (2024). "The Non-Strict Projection Lemma". IEEE Transactions on Automatic Control. 69 (8): 5584–5590. arXiv: 2305.08735 . doi:10.1109/TAC.2024.3371374. ISSN   0018-9286.
  9. Ishihara, J. Y.; Kussaba, H. T. M.; Borges, R. A. (August 2017). "Existence of Continuous or Constant Finsler's Variables for Parameter-Dependent Systems". IEEE Transactions on Automatic Control. 62 (8): 4187–4193. arXiv: 1711.04570 . doi:10.1109/tac.2017.2682221. ISSN   0018-9286. S2CID   20563439.
  10. Nguyen, Hoang Hai; Friedel, Maurice; Findeisen, Rolf (2023-03-08). "LMI-based Data-Driven Robust Model Predictive Control". arXiv: 2303.04777 [eess.SY].
  11. Oliveira, R. C. L. F.; Peres, P. L. D. (July 2007). "Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations". IEEE Transactions on Automatic Control. 52 (7): 1334–1340. doi:10.1109/tac.2007.900848. ISSN   0018-9286. S2CID   23352506.
  12. Ebihara, Yoshio; Peaucelle, Dimitri; Arzelier, Denis (2015). S-Variable Approach to LMI-Based Robust Control | SpringerLink. Communications and Control Engineering. doi:10.1007/978-1-4471-6606-1. ISBN   978-1-4471-6605-4.
  13. Hosoe, Y.; Peaucelle, D. (June 2016). "S-variable approach to robust stabilization state feedback synthesis for systems characterized by random polytopes". 2016 European Control Conference (ECC). pp. 2023–2028. doi:10.1109/ecc.2016.7810589. ISBN   978-1-5090-2591-6. S2CID   34083031.
  14. Ebihara, Y.; Hagiwara, T. (August 2002). "A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems". Proceedings of the 41st SICE Annual Conference. SICE 2002. Vol. 4. pp. 2585–2590 vol.4. doi:10.1109/sice.2002.1195827. ISBN   978-0-7803-7631-1. S2CID   125985256.
  15. Manchester, I. R.; Slotine, J. J. E. (June 2017). "Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design". IEEE Transactions on Automatic Control. 62 (6): 3046–3053. arXiv: 1503.03144 . doi:10.1109/tac.2017.2668380. ISSN   0018-9286. S2CID   5100489.