Five Ways to Save the World

Last updated

Five Ways to Save the World
Directed byJonathan Barker
Cecilia Hue
Anna Abbott
Produced byKaren O'Connor
Release date
  • 2006 (2006)
CountryUnited Kingdom
LanguageEnglish

Five Ways to Save the World is a British documentary film on environmental issues related to climate change, released in 2006. The film was made by Karen O'Connor, for the big screen and was shot in the English language to reach an international audience. It includes interviews with five environmental scientists and experts including Paul Crutzen, James Roger Angel, John Latham, Ian Jones, and Klaus Lackner.

The "five ways" proposed are geoengineering techniques:

Since the first three methods do not remove carbon dioxide from the atmosphere, they would only reduce global warming but not ocean acidification. Since the last two methods would remove carbon dioxide, they could in theory reduce both global warming and ocean acidification.


Related Research Articles

Carbon dioxide Chemical compound with formula CO₂

Carbon dioxide (chemical formula CO2) is a chemical compound occurring as a colorless gas with a density about 53% higher than that of dry air. Carbon dioxide molecules consist of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (417 ppm) by volume, having risen from pre-industrial levels of 280 ppm. In water it forms an acidic solution due to the formation of carbonic acid (H2CO3). Natural sources include volcanoes, forest fires, hot springs, geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless.

Carbon sink Reservoir absorbing more carbon from than emitting to the air, storing carbon over the long term

A carbon sink is anything, natural or otherwise, that accumulates and stores some carbon-containing chemical compound for an indefinite period and thereby removes carbon dioxide from the atmosphere.

Scientific consensus on climate change Evaluation of climate change by the scientific community

There is a strong scientific consensus that the Earth is warming and that this warming is mainly caused by human activities. This consensus is supported by various studies of scientists' opinions and by position statements of scientific organizations, many of which explicitly agree with the Intergovernmental Panel on Climate Change (IPCC) synthesis reports.

This glossary of climate change is a list of definitions of terms and concepts relevant to climate change, global warming, and related topics.

Climate engineering, or commonly geoengineering, is deliberate and large-scale intervention in the Earth's climate system. The main category of climate engineering is solar geoengineering or solar radiation management. Solar geoengineering, or solar radiation modification, would reflect some sunlight back to space to limit or reverse human-caused climate change.

Ocean acidification Climate change-induced decline of pH levels in the ocean

Ocean acidification is the ongoing decrease in the pH value of the Earth's oceans, caused by the uptake of carbon dioxide (CO2) from the atmosphere. The main cause of ocean acidification is human burning of fossil fuels. As the amount of carbon dioxide in the atmosphere increases, the amount of carbon dioxide absorbed by the ocean also increases. This leads to a series of chemical reactions in the seawater which has a negative spillover on the ocean and species living below water. When carbon dioxide dissolves into seawater, it forms carbonic acid (H2CO3). Some of the carbonic acid molecules dissociate into a bicarbonate ion and a hydrogen ion, thus increasing ocean acidity (H+ ion concentration). Between 1751 and 1996, the pH value of the ocean surface is estimated to have decreased from approximately 8.25 to 8.14, representing an increase of almost 30% in H+ ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH unit is equivalent to a tenfold change in H+ ion concentration).

Carbon sequestration Capture and long-term storage of atmospheric carbon dioxide

Carbon sequestration is the process of storing carbon in a carbon pool. Carbon dioxide is naturally captured from the atmosphere through biological, chemical, and physical processes. These changes can be accelerated through changes in land use and agricultural practices, such as converting crop land into land for non-crop fast growing plants. Artificial processes have been devised to produce similar effects, including large-scale, artificial capture and sequestration of industrially produced CO
2
using subsurface saline aquifers, reservoirs, ocean water, aging oil fields, or other carbon sinks, bio-energy with carbon capture and storage, biochar, enhanced weathering, and direct air capture when combined with storage.

Climate change Current rise in Earths average temperature and its effects

Contemporary climate change includes both global warming and its impacts on Earth's weather patterns. There have been previous periods of climate change, but the current changes are distinctly more rapid and not due to natural causes. Instead, they are caused by the emission of greenhouse gases, mostly carbon dioxide and methane. Burning fossil fuels for energy use creates most of these emissions. Certain agricultural practices, industrial processes, and forest loss are additional sources. Greenhouse gases are transparent to sunlight, allowing it through to heat the Earth's surface. When the Earth emits that heat as infrared radiation the gases absorb it, trapping the heat near the Earth's surface. As the planet heats up it causes changes like the loss of sunlight-reflecting snow cover, amplifying global warming.

This is a list of climate change topics.

Solar geoengineering Reflection of sunlight to reduce global warming

Solar geoengineering, or solar radiation modification (SRM) is a type of climate engineering in which sunlight would be reflected back to space to limit or reverse human-caused climate change. It is not a substitute for reducing greenhouse gas emissions, but could act as a temporary measure to limit warming while emissions of greenhouse gases are reduced and carbon dioxide is removed. The two most studied methods for SRM are stratospheric aerosol injection and marine cloud brightening.

Carbonate–silicate cycle Geochemical transformation of silicate rocks

The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism. On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature.

Carbon dioxide removal Removal of atmospheric carbon dioxide

Carbon dioxide removal (CDR), also known as negative CO2 emissions, is a process in which carbon dioxide gas is removed from the atmosphere and sequestered for long periods of time. Similarly, greenhouse gas removal (GGR) or negative greenhouse gas emissions is the removal of greenhouse gases (GHGs) from the atmosphere by deliberate human activities, i.e., in addition to the removal that would occur via natural carbon cycle or atmospheric chemistry processes. In the context of net zero greenhouse gas emissions targets, CDR is increasingly integrated into climate policy, as a new element of mitigation strategies. CDR and GGR methods are also known as negative emissions technologies (NET), and may be cheaper than preventing some agricultural greenhouse gas emissions.

Marine chemistry, also known as ocean chemistry or chemical oceanography, is influenced by plate tectonics and seafloor spreading, turbidity currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. The field of chemical oceanography studies the chemistry of marine environments including the influences of different variables. Marine life has adapted to the chemistries unique to earth's oceans, and marine ecosystems are sensitive to changes in ocean chemistry.

Effects of climate change on oceans Direct and indirect effects

The effects of climate change on oceans include the rise in sea level from ocean warming and ice sheet melting, and changes in pH value, circulation, and stratification due to changing temperatures leading to changes in oxygen concentrations. There is clear evidence that the Earth is warming due to anthropogenic emissions of greenhouse gases and leading inevitably to ocean warming. The greenhouse gases taken up by the ocean help to mitigate climate change but lead to ocean acidification.

Ocean acidification in the Great Barrier Reef Threat to the reef which reduces the viability and strength of reef-building corals

Ocean acidification threatens the Great Barrier Reef by reducing the viability and strength of coral reefs. The Great Barrier Reef, considered one of the seven natural wonders of the world and a biodiversity hotspot, is located in Australia. Similar to other coral reefs, it is experiencing degradation due to ocean acidification. Ocean acidification results from a rise in atmospheric carbon dioxide, which is taken up by the ocean. This process can increase sea surface temperature, decrease aragonite, and lower the pH of the ocean. The more humanity consumes fossil fuels, the more the ocean absorbs released CO₂, furthering ocean acidification.

Climate restoration

Climate restoration is the climate change goal and associated actions to restore CO2 to levels humans have survived long-term, below 300 ppm. This would restore the Earth system generally to a safe state, for the well-being of future generations of humanity and nature. Actions include carbon dioxide removal from the Carbon dioxide in Earth's atmosphere, which, in combination with emissions reductions, would reduce the level of CO2 in the atmosphere and thereby reduce the global warming produced by the greenhouse effect of an excess of CO2 over its pre-industrial level. Actions also include restoring pre-industrial atmospheric methane levels by accelerating natural methane oxidation.

Ocean storage of carbon dioxide Possible method of carbon sequestration

Ocean storage of carbon dioxide (CO2) is a method of carbon sequestration. The concept of storing carbon dioxide in the ocean was first proposed by Italian physicist Cesare Marchetti in his 1976 paper "On Geoengineering and the carbon dioxide problem." Since then, the concept of sequestering atmospheric carbon dioxide in the world's oceans has been investigated by scientists, engineers, and environmental activists. 39,000 GtC (gigatonnes of carbon) currently reside in the oceans while only 750 GtC are in the atmosphere.

Ocean acidification in the Arctic Ocean

The Arctic ocean covers an area of 14,056,000 squared kilometers, and supports a diverse and important socioeconomic food web of organisms, despite its average water temperature being 32 degrees Fahrenheit. Over the last three decades, the Arctic Ocean has experienced drastic changes due to climate change. One of the changes is in the acidity levels of the ocean, which have been consistently increasing at twice the rate of the Pacific and Atlantic oceans. Arctic Ocean acidification is a result of feedback from climate system mechanisms, and is having negative impacts on Arctic Ocean ecosystems and the organisms that live within them.

The poleward migration of coral species refers to the phenomenon brought on by rising sea temperatures, wherein corals are colonising cooler climates in an attempt to circumvent coral bleaching, rising sea levels and ocean acidification. In the age of Anthropocene, the changing global climate has disrupted fundamental natural processes and brought about observable changes in the submarine sphere. Whilst coral reefs are bleaching in tropical areas like the Great Barrier Reef, even more striking, and perhaps more alarming; is the growth of tropical coral species in temperate regions, which has taken place over the past decade. Coral reefs are frequently compared to the "canaries in the coal mine," who were used by miners as an indicator of air quality. In much the same way, "coral reefs are sensitive to environmental changes that could damage other habitats in the future," meaning they will be the first to visually exhibit the true implications of global warming on the natural world.

Human impact on marine life

Human activities affect marine life and marine habitats through overfishing, habitat loss, the introduction of invasive species, ocean pollution, ocean acidification and ocean warming. These impact marine ecosystems and food webs and may result in consequences as yet unrecognised for the biodiversity and continuation of marine life forms.