Floppy disk hardware emulator

Last updated
A floppy disk hardware emulator for a 3 1/2 drive. Floppy hardware emulator.jpg
A floppy disk hardware emulator for a 3½ drive.
The front of an emulator, showing the USB data exchange port. Floppy hardware emulator front.jpg
The front of an emulator, showing the USB data exchange port.

A floppy disk hardware emulator or semi-virtual diskette (SVD) is a device that emulates a floppy disk drive with a solid state or network storage device that is plug compatible with the drive it replaces, similar to how solid-state drives replace mechanical hard disk drives.

Contents

History

Older models of computers, electronic keyboards and industrial automation often used floppy disk drives for data transfer. Older equipment may be difficult to replace or upgrade because of cost, requirement for continuous availability or unavailable upgrades. Proper operation may require operating system, software and data to be read and written from and to floppies, forcing users to maintain floppy drives on supporting systems. [1]

Floppy disks and floppy drives are gradually going out of production, [2] [3] [4] [5] and replacement of malfunctioning drives, and the systems hosting them, is becoming increasingly difficult. Floppy disks themselves are fragile, or may need to be replaced often. An alternative is to use a floppy disk hardware emulator, a device which appears to be a standard floppy drive to the old equipment by interfacing directly to the floppy disk controller, while storing data in another medium such as a USB thumb drive, Secure Digital card, or a shared drive on a computer network. Emulators can also be used as a higher-performance replacement for mechanical floppy disk drives.

Emulation process

A typical floppy disk controller sends an MFM / FM / GCR encoded signal to the drive to write data, and expects a similar signal returned when reading the drive. [6] On a write, a hardware PLL or a software-based filter component undoes the encoding, and stores the sector data as logically written by the host. An inverse mechanism translates the stored data back into an encoded signal when the data is read. Noisy raw data signals are filtered and cleaned up before conversion.

Most FDC interfaces do not directly address tracks; instead they provide "step-in" and "step-out" pulses. Those, and the current sector number virtually rotating under the emulated read/write head, are tracked by the emulator in order to determine which sector is to be accessed. [7] [8]

Because the interface to the floppy drive is very low-level, emulators must maintain the approximate timing of floppy disk operations. This may require the emulator to provide buffering, with some delay in updating the permanent storage.

The emulator saves the data written to the floppy in either local storage (stand-alone emulators), or in a remote storage device or data exchange module (stateless emulators).

Data exchange

The floppy disk emulator can provide other systems access to the data on the emulated floppy in a number of ways:

Direct access and floppy image implementations can also emulate system / non-standard floppies, whose file system can't be simply translated.

Floppy image implementation can also be coupled with a virtual drive to seamlessly emulate floppy drives on a computer.

Some devices can store multiple floppy images, and provide a mechanism to select which emulated floppy is mounted on the emulated drive.

Related Research Articles

<span class="mw-page-title-main">Parallel ATA</span> Interface standard for the connection of storage devices

Parallel ATA (PATA), originally AT Attachment, also known as IDE, is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, and optical disc drives in computers.

<span class="mw-page-title-main">Computer data storage</span> Storage of digital data readable by computers

Computer data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.

<span class="mw-page-title-main">Floppy disk</span> Removable disk storage medium

A floppy disk or floppy diskette is an obsolescent type of disk storage composed of a thin and flexible disk of a magnetic storage medium in a square or nearly square plastic enclosure lined with a fabric that removes dust particles from the spinning disk. Floppy disks store digital data which can be read and written when the disk is inserted into a floppy disk drive (FDD) connected to or inside a computer or other device.

<span class="mw-page-title-main">Hard disk drive</span> Electro-mechanical data storage device

A hard disk drive (HDD), hard disk, hard drive, or fixed disk, is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off. Modern HDDs are typically in the form of a small rectangular box.

A disk image is a snapshot of a storage device's structure and data typically stored in one or more computer files on another storage device. Traditionally, disk images were bit-by-bit copies of every sector on a hard disk often created for digital forensic purposes, but it is now common to only copy allocated data to reduce storage space. Compression and deduplication are commonly used to reduce the size of the image file set. Disk imaging is done for a variety of purposes including digital forensics, cloud computing, system administration, as part of a backup strategy, and legacy emulation as part of a digital preservation strategy. Disk images can be made in a variety of formats depending on the purpose. Virtual disk images are intended to be used for cloud computing, ISO images are intended to emulate optical media and RAW disk images are used for forensic purposes. Proprietary formats are typically used by disk imaging software. Despite the benefits of disk imaging the storage costs can be high, management can be difficult and they can be time consuming to create.

<span class="mw-page-title-main">ST506/ST412</span>

The ST-506 and ST-412 were early hard disk drive products introduced by Seagate in 1980 and 1981 respectively, that later became construed as hard disk drive interfaces: the ST-506 disk interface and the ST-412 disk interface. Compared to the ST-506 precursor, the ST-412 implemented a refinement to the seek speed, and increased the drive capacity from 5 MB to 10 MB, but was otherwise highly similar.

<span class="mw-page-title-main">SATA</span> Computer bus interface for storage devices

SATA is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives, optical drives, and solid-state drives. Serial ATA succeeded the earlier Parallel ATA (PATA) standard to become the predominant interface for storage devices.

A boot disk is a removable digital data storage medium from which a computer can load and run (boot) an operating system or utility program. The computer must have a built-in program which will load and execute a program from a boot disk meeting certain standards.

In computing, a removable media is a data storage media that is designed to be readily inserted and removed from a system. Most early removable media, such as floppy disks and optical discs, require a dedicated read/write device to be installed in the computer, while others, such as USB flash drives, are plug-and-play with all the hardware required to read them built into the device, so only need a driver software to be installed in order to communicate with the device. Some removable media readers/drives are integrated into the computer case, while others are standalone devices that need to be additionally installed or connected.

<span class="mw-page-title-main">USB flash drive</span> Data storage device

A USB flash drive is a data storage device that includes flash memory with an integrated USB interface. It is typically removable, rewritable and much smaller than an optical disc. Most weigh less than 30 g (1 oz). Since first appearing on the market in late 2000, as with virtually all other computer memory devices, storage capacities have risen while prices have dropped. As of March 2016, flash drives with anywhere from 8 to 256 gigabytes (GB) were frequently sold, while 512 GB and 1 terabyte (TB) units were less frequent. As of 2018, 2 TB flash drives were the largest available in terms of storage capacity. Some allow up to 100,000 write/erase cycles, depending on the exact type of memory chip used, and are thought to physically last between 10 and 100 years under normal circumstances.

<span class="mw-page-title-main">Individual Computers Catweasel</span>

The Catweasel is a family of enhanced floppy-disk controllers from German company Individual Computers. These controllers are designed to allow more recent computers, such as PCs, to access a wide variety of older or non-native disk formats using standard floppy drives.

<span class="mw-page-title-main">USB mass storage device class</span>

The USB mass storage device class is a set of computing communications protocols, specifically a USB Device Class, defined by the USB Implementers Forum that makes a USB device accessible to a host computing device and enables file transfers between the host and the USB device. To a host, the USB device acts as an external hard drive; the protocol set interfaces with a number of storage devices.

<span class="mw-page-title-main">QEMU</span> Free virtualization and emulation software

QEMU is a free and open-source emulator. It emulates the machine's processor through dynamic binary translation and provides a set of different hardware and device models for the machine, enabling it to run a variety of guest operating systems. It can interoperate with Kernel-based Virtual Machine (KVM) to run virtual machines at near-native speed. QEMU can also do emulation for user-level processes, allowing applications compiled for one architecture to run on another.

In computing, data recovery is a process of retrieving deleted, inaccessible, lost, corrupted, damaged, or formatted data from secondary storage, removable media or files, when the data stored in them cannot be accessed in a usual way. The data is most often salvaged from storage media such as internal or external hard disk drives (HDDs), solid-state drives (SSDs), USB flash drives, magnetic tapes, CDs, DVDs, RAID subsystems, and other electronic devices. Recovery may be required due to physical damage to the storage devices or logical damage to the file system that prevents it from being mounted by the host operating system (OS).

In computing, external storage refers to non-volatile (secondary) data storage outside a computer's own internal hardware, and thus can be readily disconnected and accessed elsewhere. Such storage devices may refer to removable media, compact flash drives, portable storage devices, or network-attached storage. Web-based cloud storage is the latest technology for external storage.

<span class="mw-page-title-main">Floppy-disk controller</span> Circuitry that controls reading from and writing to a computers floppy disk drive

A floppy-disk controller (FDC) has evolved from a discrete set of components on one or more circuit boards to a special-purpose integrated circuit or a component thereof. An FDC directs and controls reading from and writing to a computer's floppy disk drive (FDD). The FDC is responsible for reading data presented from the host computer and converting it to the drive's on-disk format using one of a number of encoding schemes, like FM encoding or MFM encoding, and reading those formats and returning it to its original binary values.

<span class="mw-page-title-main">Live USB</span> USB drive with a full bootable operating system

A live USB is a portable USB-attached external data storage device containing a full operating system that can be booted from. The term is reminiscent of USB flash drives but may encompass an external hard disk drive or solid-state drive, though they may be referred to as "live HDD" and "live SSD" respectively. They are the evolutionary next step after live CDs, but with the added benefit of writable storage, allowing customizations to the booted operating system. Live USBs can be used in embedded systems for system administration, data recovery, or test driving, and can persistently save settings and install software packages on the USB device.

This glossary of computer hardware terms is a list of definitions of terms and concepts related to computer hardware, i.e. the physical and structural components of computers, architectural issues, and peripheral devices.

The floppy disk is a data storage and transfer medium that was ubiquitous from the mid-1970s well into the 2000s. Besides the 3½-inch and 5¼-inch formats used in IBM PC compatible systems, or the 8-inch format that preceded them, many proprietary floppy disk formats were developed, either using a different disk design or special layout and encoding methods for the data held on the disk.

Commodore 64 disk/tape emulation and data transfer comprises hardware and software for Commodore 64 disk & tape emulation and for data transfer between either Commodore 64 (C64), Commodore (1541) disk drive or Commodore tape deck and newer computers.

References

  1. Hardin, Ken (March 18, 2003). "Don't be too quick to dump the floppy". TechRepublic . Archived from the original on June 14, 2018.
  2. "PC World says farewell to floppy". BBC News . January 30, 2007. Archived from the original on February 16, 2018.
  3. "R.I.P. Floppy Disk". BBC News . April 1, 2003. Archived from the original on July 19, 2018.
  4. "3.5-inch floppy still available from Verbatim, [[Imation]] (3M), and Maxell". Archived from the original on 2010-11-30. Retrieved 2011-11-24.
  5. Powers, Jeffrey (April 26, 2010). "Tribute to Floppy Disk as Sony discontinues production". Geek News Central. Archived from the original on May 1, 2010.
  6. "Magnetic Recording Fundamentals". Computer Peripherals (PDF). Singapore: Nanyang Technological University. October 16, 2001. Archived (PDF) from the original on October 2, 2018.
  7. Haardt, Michael; Knaff, Alain; Niemi, David C. (June 11, 2001). "The floppy user guide" (PDF). Archived (PDF) from the original on February 13, 2019.
  8. Kozierok, Charles M. "Floppy Disk Drives". The PC Guide. Archived from the original on March 4, 2001.

See also