Force matching

Last updated

Force matching is a research method consisting of test subjects attempting to produce a set forces that are equal to a set of more reliable reference forces.

Contents

Types

Biomechanical

A subject’s maximum voluntary contraction (MVC) is recorded and used to normalize both reference forces and results between subjects. [1] During the test subjects are assisted in producing a reference force using various types of feedback (static weight or visual display of force generated). This is followed by an attempt of the subject to generate the reference force without assistance. The duration for both reference and matching tasks is usually four seconds. Results are taken as a mean value of force generated over a time interval set by the researcher. Time intervals are generally one second long and near the end of the attempt. Reference forces are typically set as a percentage of a subject’s MVC while error is typically reported as a percentage of a subject’s MVC.

Atomic

It is one of the effective research method to obtain realistic classical interatomic potential or force field for molecular dynamics simulation with high degree of transferability for systems which the first principles or ab initio method is capable of treating. This method is based on fitting the forces on individual atoms in a number of reference structures, cohesive energies and stresses on unit cell obtained from first principles calculation with those obtained from classical interatomic potential. The target of the computational fitting is to determine unknown coefficients in classical interatomic potential function. This method is developed by F. Ercolessi, and J. B. Adams during 1992 and 1993 at Department of Material Science and Engineering at the University of Illinois Urbana-Champaign. [2] [3] The enormous number of reference structures, which can reach several thousand values, makes it possible to fit large number of parameters needed for potential in binary and ternary systems. [4] [5] For Lennard-Jones potential: [6]

where ε is the depth of the potential well, σ is the finite distance at which the inter-particle potential is zero, r is the distance between the particles. These two unknown parameters can be fitted to reproduce experimental data or accurate data obtained from first principle calculations. Differentiating the L-J potential with respect to r gives an expression for the net inter-molecular force between 2 molecules. This inter-molecular force may be attractive or repulsive, depending on the value of r. When r is very small, the molecules repel each other. In force matching method the forces from classical potential

are compared with reference force calculated from ab initio method to determine and .

Applications

Biomechanical force matching has been used by researchers to describe the accuracy of muscle contractions under various conditions. It has been observed that the thumb is more accurate in force matching than fingers are. [1] Impairment of the extensor pollicis longus has not produced a decrease in force matching accuracy of the flexor pollicis longus. [7]

Notes

  1. 1 2 Kilbreath & Gandevia 1993.
  2. Ercolessi, F., & Adams, J. B. (1992). Interatomic potentials from first-principles calculations. MRS Online Proceedings Library Archive, 291.
  3. Ercolessi, F; Adams, J. B (10 June 1994). "Interatomic Potentials from First-Principles Calculations: The Force-Matching Method". Europhysics Letters (EPL). 26 (8): 583–588. arXiv: cond-mat/9306054 . Bibcode:1994EL.....26..583E. doi:10.1209/0295-5075/26/8/005. ISSN   0295-5075. S2CID   18043298.
  4. Brommer, P.; Gähler, F. (2007). "Potfit: effective potentials from ab initio data". Modelling and Simulation in Materials Science and Engineering. 15 (3): 295. arXiv: 0704.0185 . doi:10.1088/0965-0393/15/3/008.
  5. Brommer, P.; Gähler, F. (2006). "Effective potentials for quasicrystals from ab-initio data". Philosophical Magazine. 86 (6–8): 753–758. arXiv: 0704.0163 . doi:10.1080/14786430500333349.
  6. Lennard-Jones, J. E. (1924), "On the Determination of Molecular Fields", Proc. R. Soc. Lond. A, 106 (738): 463–477, Bibcode:1924RSPSA.106..463J, doi:10.1098/rspa.1924.0082
  7. Kilbreath et al. 1995.

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems published by mathematician Emmy Noether in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

<span class="mw-page-title-main">Lennard-Jones potential</span> Model of intermolecular interactions

In computational chemistry, molecular physics, and physical chemistry, the Lennard-Jones potential is an intermolecular pair potential. Out of all the intermolecular potentials, the Lennard-Jones potential is probably the one that has been the most extensively studied. It is considered an archetype model for simple yet realistic intermolecular interactions. The Lennard-Jones potential is often used as a building block in molecular models for more complex substances. Many studies of the idealized "Lennard-Jones substance" use the potential to understand the physical nature of matter.

<span class="mw-page-title-main">Young's modulus</span> Mechanical property that measures stiffness of a solid material

Young's modulus is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress applied to the object and the resulting axial strain in the linear elastic region of the material.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

In engineering, deformation may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.

Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. It is named for James Clerk Maxwell who proposed the model in 1867. It is also known as a Maxwell fluid. A generalization of the scalar relation to a tensor equation lacks motivation from more microscopic models and does not comply with the concept of material objectivity. However, these criteria are fulfilled by the Upper-convected Maxwell model.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem.

The Larson–Miller relation, also widely known as the Larson–Miller parameter and often abbreviated LMP, is a parametric relation used to extrapolate experimental data on creep and rupture life of engineering materials.

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

<span class="mw-page-title-main">Fiber-reinforced composite</span>

A fiber-reinforced composite (FRC) is a composite building material that consists of three components:

  1. the fibers as the discontinuous or dispersed phase,
  2. the matrix as the continuous phase, and
  3. the fine interphase region, also known as the interface.

In theoretical chemistry, the Buckingham potential is a formula proposed by Richard Buckingham which describes the Pauli exclusion principle and van der Waals energy for the interaction of two atoms that are not directly bonded as a function of the interatomic distance . It is a variety of interatomic potentials.

Biology Monte Carlo methods (BioMOCA) have been developed at the University of Illinois at Urbana-Champaign to simulate ion transport in an electrolyte environment through ion channels or nano-pores embedded in membranes. It is a 3-D particle-based Monte Carlo simulator for analyzing and studying the ion transport problem in ion channel systems or similar nanopores in wet/biological environments. The system simulated consists of a protein forming an ion channel (or an artificial nanopores like a Carbon Nano Tube, CNT), with a membrane (i.e. lipid bilayer) that separates two ion baths on either side. BioMOCA is based on two methodologies, namely the Boltzmann transport Monte Carlo (BTMC) and particle-particle-particle-mesh (P3M). The first one uses Monte Carlo method to solve the Boltzmann equation, while the later splits the electrostatic forces into short-range and long-range components.

The Touschek effect describes the scattering and loss of charged particles in a storage ring. It was discovered by Bruno Touschek.

References