Four-spiral semigroup

Last updated

In mathematics, the four-spiral semigroup is a special semigroup generated by four idempotent elements. This special semigroup was first studied by Karl Byleen in a doctoral dissertation submitted to the University of Nebraska in 1977. [1] [2] It has several interesting properties: it is one of the most important examples of bi-simple but not completely-simple semigroups; [3] it is also an important example of a fundamental regular semigroup; [2] it is an indispensable building block of bisimple, idempotent-generated regular semigroups. [2] A certain semigroup, called double four-spiral semigroup, generated by five idempotent elements has also been studied along with the four-spiral semigroup. [4] [2]

Contents

Definition

The four-spiral semigroup, denoted by Sp4, is the free semigroup generated by four elements a, b, c, and d satisfying the following eleven conditions: [2]

  • a2 = a, b2 = b, c2 = c, d2 = d.
  • ab = b, ba = a, bc = b, cb = c, cd = d, dc = c.
  • da = d.

The first set of conditions imply that the elements a, b, c, d are idempotents. The second set of conditions imply that a R b L c R d where R and L are the Green's relations in a semigroup. The lone condition in the third set can be written as d ωla, where ωl is a biorder relation defined by Nambooripad. The diagram below summarises the various relations among a, b, c, d:

Elements of the four-spiral semigroup

The spiral structure of idempotents in the four-spiral semigroup Sp4. In this diagram, elements in the same row are R-related, elements in the same column are L-related, and the order proceeds down the four diagonals (away from the center). Spiral Structure of idempotents in Sp4.png
The spiral structure of idempotents in the four-spiral semigroup Sp4. In this diagram, elements in the same row are R-related, elements in the same column are L-related, and the order proceeds down the four diagonals (away from the center).
The structure of the four-spiral semigroup Sp4. The set of idempotents (red coloured points) and the subsemigroups A, B, C, D, E are shown. Four Spiral Semigroup 02.png
The structure of the four-spiral semigroup Sp4. The set of idempotents (red coloured points) and the subsemigroups A, B, C, D, E are shown.

General elements

Every element of Sp4 can be written uniquely in one of the following forms: [2]

[c] (ac)m [a]
[d] (bd)n [b]
[c] (ac)mad (bd)n [b]

where m and n are non-negative integers and terms in square brackets may be omitted as long as the remaining product is not empty. The forms of these elements imply that Sp4 has a partition Sp4 = ABCDE where

A = { a(ca)n, (bd)n+1, a(ca)md(bd)n : m, n non-negative integers }
B = { (ac)n+1, b(db)n, a(ca)m(db) n+1 : m, n non-negative integers }
C = { c(ac)m, (db)n+1, (ca)m+1(db)n+1 : m, n non-negative integers }
D = { d(bd)n, (ca)m+1(db)n+1d : m, n non-negative integers }
E = { (ca)m : m positive integer }

The sets A, B, C, D are bicyclic semigroups, E is an infinite cyclic semigroup and the subsemigroup DE is a nonregular semigroup.

Idempotent elements

The set of idempotents of Sp4, [5] is {an, bn, cn, dn : n = 0, 1, 2, ...} where, a0 = a, b0 = b, c0 = c, d0 = d, and for n = 0, 1, 2, ....,

an+1 = a(ca)n(db)nd
bn+1 = a(ca)n(db)n+1
cn+1 = (ca)n+1(db)n+1
dn+1 = (ca)n+1(db)n+ld

The sets of idempotents in the subsemigroups A, B, C, D (there are no idempotents in the subsemigoup E) are respectively:

EA = { an : n = 0,1,2, ... }
EB = { bn : n = 0,1,2, ... }
EC = { cn : n = 0,1,2, ... }
ED = { dn : n = 0,1,2, ... }

Four-spiral semigroup as a Rees-matrix semigroup

Let S be the set of all quadruples (r, x, y, s) where r, s, { 0, 1 } and x and y are nonnegative integers and define a binary operation in S by

The set S with this operation is a Rees matrix semigroup over the bicyclic semigroup, and the four-spiral semigroup Sp4 is isomorphic to S. [2]

Properties

Double four-spiral semigroup

The fundamental double four-spiral semigroup, denoted by DSp4, is the semigroup generated by five elements a, b, c, d, e satisfying the following conditions: [2] [4]

  • a2 = a, b2 = b, c2 = c, d2 = d, e2 = e
  • ab = b, ba = a, bc = b, cb = c, cd = d, dc = c, de = d, ed = e
  • ae = e, ea = e

The first set of conditions imply that the elements a, b, c, d, e are idempotents. The second set of conditions state the Green's relations among these idempotents, namely, a R b L c R d L e. The two conditions in the third set imply that e ω a where ω is the biorder relation defined as ω = ωl ωr.

Related Research Articles

In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition.

In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.

<span class="mw-page-title-main">Modular group</span> Orientation-preserving mapping class group of the torus

In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic.

In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices.

In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.

In mathematics, the bicyclic semigroup is an algebraic object important for the structure theory of semigroups. Although it is in fact a monoid, it is usually referred to as simply a semigroup. It is perhaps most easily understood as the syntactic monoid describing the Dyck language of balanced pairs of parentheses. Thus, it finds common applications in combinatorics, such as describing binary trees and associative algebras.

In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.

In mathematics, and more specifically in abstract algebra, a rng is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng is meant to suggest that it is a ring without i, that is, without the requirement for an identity element.

In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of prime order p is isomorphic to , the ring of p-adic integers. They have a highly non-intuitive structure upon first glance because their additive and multiplicative structure depends on an infinite set of recursive formulas which do not behave like addition and multiplication formulas for standard p-adic integers.

In mathematics, a partial order or total order < on a set is said to be dense if, for all and in for which , there is a in such that . That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable.

In abstract algebra, a semiheap is an algebraic structure consisting of a non-empty set H with a ternary operation denoted that satisfies a modified associativity property:

In mathematics, a regular semigroup is a semigroup S in which every element is regular, i.e., for each element a in S there exists an element x in S such that axa = a. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations.

A biordered set is a mathematical object that occurs in the description of the structure of the set of idempotents in a semigroup.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group:


In mathematics, more precisely in formal language theory, the profinite words are a generalization of the notion of finite words into a complete topological space. This notion allows the use of topology to study languages and finite semigroups. For example, profinite words are used to give an alternative characterization of the algebraic notion of a variety of finite semigroups.

In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly.

References

  1. Byleen, K. (1977). The Structure of Regular and Inverse Semigroups, Doctoral Dissertation. University of Nebraska.
  2. 1 2 3 4 5 6 7 8 Pierre Antoine Grillet (1996). "On the fundamental double four-spiral semigroup". Bulletin of the Belgian Mathematical Society . 3: 201 &minus, 208.
  3. L.N. Shevrin (originator). "Simple semi-group". Encyclopedia of Mathematics. Retrieved 25 January 2014.
  4. 1 2 3 Meakin, John; K. Byleen; F. Pastijn (1980). "The double four-spiral semigroup". Simon Stevin. 54: 75 & minus 105.
  5. Karl Byleen; John Meakin; Francis Pastjin (1978). "The Fundamental Four-Spiral Semigroup". Journal of Algebra. 54: 6 &minus, 26. doi: 10.1016/0021-8693(78)90018-2 .