Fractional Chern insulator

Last updated

Fractional Chern insulators (FCIs) are lattice generalizations of the fractional quantum Hall effect that have been studied theoretically since 1993 [1] and have been studied more intensely since early 2010. [2] [3] They were first predicted to exist in topological flat bands carrying Chern numbers. They can appear in topologically non-trivial band structures even in the absence of the large magnetic fields needed for the fractional quantum Hall effect. In principle, they can also occur in partially filled bands with trivial band structures if the inter-electron interaction is unusual. [4] They promise physical realizations at lower magnetic fields, higher temperatures, and with shorter characteristic length scales compared to their continuum counterparts. [5] [6] FCIs were initially studied by adding electron-electron interactions [7] to a fractionally filled Chern insulator, in one-body models where the Chern band is quasi-flat, [8] [9] at zero magnetic field. The FCIs exhibit a fractional quantized Hall conductance.

Contents

Prior work and experiments with finite magnetic fields

In works predating the theoretical studies of FCIs, the analogue of the Laughlin state was demonstrated in Hofstadter-type models. [10] [11] The essential features of the topology of single-particle states in such models still stems from the presence of a magnetic field. Nevertheless, it was shown that in the presence of a lattice, fractional quantum Hall states can retain their topological character, in the form of fractional Chern numbers [12] . Chern Insulators - single-particle states exhibiting an integer anomalous quantized Hall effect at zero field - have been theoretically proposed. [13] Fractionally filling such states, in the presence of repulsive interactions, can lead to the zero-field Fractional Chern Insulator. These FCIs are sometimes not connected to the Fractional Quantum Hall Effect in Landau Levels. This is the case in bands with Chern number , [14] and are therefore a new type of states inherent to such lattice models. They have been explored with respect to their quasi-charge excitations, non-Abelian states and the physics of twist defects, [15] which may be conceptually interesting for topological quantum computing.

Experimentally, Chern insulators have been realized without a magnetic field. [16] FCIs have been claimed to be realized experimentally in van der Waals heterostructures, but with an external magnetic field of order 10 – 30 T and, more recently, FCIs in a band have been claimed to be observed in twisted bilayer graphene close to the magic angle, yet again requiring a magnetic field, of order 5 T in order to "smoothen" out the Berry curvature of the bands. [17] These states have been called FCIs due to their link to lattice physics -- either in Hofstadter bands or in the moiré structure, but still required nonzero-magnetic field for their stabilization.

Zero field fractional Chern insulators

The prerequisite of zero field fractional Chern insulator is magnetism. The best way to have magnetism is to have exchange interaction that simultaneously polarize the spin. This phenomenon in twisted MoTe2 in both integer and fractional states was first observed by a University of Washington group. [18] In 2023 a series of groups have reported FCIs at zero magnetic field [19] in twisted MoTe
2
samples. The University of Washington group [20] first identified fractional Chern number of , and state with trion emission sensing. This is followed by the Cornell group who performed thermodynamic measurement on and state. These samples, where the moiré bands are valley-spin locked, undergo a spin-polarization transition which gives rise to a Chern insulator state at integer filling of the moiré bands. Upon fractional filling at and , a gapped state develops with a fractional slope in the Streda formula, a hallmark of an FCI. These fractional states are identical to the predicted zero magnetic field FCIs. [7] After the optical sensing measurement, University of Washington group [21] first reported transport `smoking-gun` evidence of fractional quantum anomalous Hall effect that should be exhibited by a zero-field fractional Chern insulator at , and . They also identified a possible composite Fermi liquid at that mimics the half filled Landau level for 2D electron gas. The and states are also partially repeated by the Shanghai group, while the quantization is not as good. [22] The full matching of FCI physics in MoTe
2
, using the single particle model proposed in, [23] to experiments still holds intriguing and unresolved mysteries. These were only partially theoretically addressed, [24] where the issues of model parameters, sample magnetization, and the appearance of some FCI states (at filling and ) but the absence of others (so far at filling at ) are partially addressed.

In graphene system, MIT group found the unexpected FCIs with lots of fractions in rhombohedral pentalayer graphene (RPG), which marks RPG another promising system for FCI physics with higher mobility and device quality.

Related Research Articles

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of , where e is the electron charge and h is the Planck constant. It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations". The microscopic origin of the FQHE is a major research topic in condensed matter physics.

In particle theory, the skyrmion is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.

<span class="mw-page-title-main">Hofstadter's butterfly</span> Fractal describing the theorised behaviour of electrons in a magnetic field

In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter and is one of the early examples of modern scientific data visualization. The name reflects the fact that, as Hofstadter wrote, "the large gaps [in the graph] form a very striking pattern somewhat resembling a butterfly."

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels for motion in the third direction, which can then be ignored for most problems. Thus the electrons appear to be a 2D sheet embedded in a 3D world. The analogous construct of holes is called a two-dimensional hole gas (2DHG), and such systems have many useful and interesting properties.

<span class="mw-page-title-main">Wigner crystal</span> Solid (crystalline) phase of electrons

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in a uniform, inert, neutralizing background will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.

A topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime. These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable. Small, cumulative perturbations can cause quantum states to decohere and introduce errors in the computation, but such small perturbations do not change the braids' topological properties. This is like the effort required to cut a string and reattach the ends to form a different braid, as opposed to a ball bumping into a wall.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

<span class="mw-page-title-main">Sankar Das Sarma</span>

Sankar Das Sarma is an India-born American theoretical condensed matter physicist. He has been a member of the department of physics at University of Maryland, College Park since 1980.

The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry.

The spin stiffness or spin rigidity is a constant which represents the change in the ground state energy of a spin system as a result of introducing a slow in-plane twist of the spins. The importance of this constant is in its use as an indicator of quantum phase transitions—specifically in models with metal-insulator transitions such as Mott insulators. It is also related to other topological invariants such as the Berry phase and Chern numbers as in the Quantum Hall effect.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

<span class="mw-page-title-main">Topological insulator</span> State of matter with insulating bulk but conductive boundary

A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material.

In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order.

Quantum anomalous Hall effect (QAHE) is the "quantum" version of the anomalous Hall effect. While the anomalous Hall effect requires a combination of magnetic polarization and spin-orbit coupling to generate a finite Hall voltage even in the absence of an external magnetic field, the quantum anomalous Hall effect is its quantized version. The Hall conductivity acquires quantized values proportional to integer multiples of the von Klitzing constant. In this respect the QAHE is similar to the quantum Hall effect. The integer here is equal to the Chern number which arises out of topological properties of the material band structure. These effects are observed in systems called quantum anomalous Hall insulators.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are graphene and other Dirac semimetals, topological insulators, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the gamma matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

Magnetic topological insulators are three dimensional magnetic materials with a non-trivial topological index protected by a symmetry other than time-reversal. In contrast with a non-magnetic topological insulator, a magnetic topological insulator can have naturally gapped surface states as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface anomalous Hall conductivity perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.

Photonic topological insulators are artificial electromagnetic materials that support topologically non-trivial, unidirectional states of light. Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation. The field that studies these phases of light is referred to as topological photonics.

In theoretical physics, the curvature renormalization group (CRG) method is an analytical approach to determine the phase boundaries and the critical behavior of topological systems. Topological phases are phases of matter that appear in certain quantum mechanical systems at zero temperature because of a robust degeneracy in the ground-state wave function. They are called topological because they can be described by different (discrete) values of a nonlocal topological invariant. This is to contrast with non-topological phases of matter that can be described by different values of a local order parameter. States with different values of the topological invariant cannot change into each other without a phase transition. The topological invariant is constructed from a curvature function that can be calculated from the bulk Hamiltonian of the system. At the phase transition, the curvature function diverges, and the topological invariant correspondingly jumps abruptly from one value to another. The CRG method works by detecting the divergence in the curvature function, and thus determining the boundaries between different topological phases. Furthermore, from the divergence of the curvature function, it extracts scaling laws that describe the critical behavior, i.e. how different quantities behave as the topological phase transition is approached. The CRG method has been successfully applied to a variety of static, periodically driven, weakly and strongly interacting systems to classify the nature of the corresponding topological phase transitions.

References

  1. Kol, A.; Read, N. (Sep 1993). "Fractional quantum Hall effect in a periodic potential". Physical Review B. 48 (12): 8890. doi:10.1103/PhysRevB.48.8890.
  2. Neupert, Titus; Chamon, Claudio; Iadecola, Thomas; Santos, Luiz H; Mudry, Christopher (2015-12-01). "Fractional (Chern and topological) insulators". Physica Scripta. T164: 014005. arXiv: 1410.5828 . Bibcode:2015PhST..164a4005N. doi:10.1088/0031-8949/2015/T164/014005. ISSN   0031-8949. S2CID   117125248.
  3. Liu, Zhao; Bergholtz, Emil J. (2024-01-01), "Recent developments in fractional Chern insulators", in Chakraborty, Tapash (ed.), Encyclopedia of Condensed Matter Physics (Second Edition), Oxford: Academic Press, pp. 515–538, arXiv: 2208.08449 , doi:10.1016/b978-0-323-90800-9.00136-0, ISBN   978-0-323-91408-6, S2CID   251643711 , retrieved 2023-11-05
  4. Simon, Steven H.; Harper, Fenner; Read, N. (2015-11-03). "Fractional Chern insulators in bands with zero Berry curvature". Physical Review B. 92: 195104.
  5. Bergholtz, Emil J.; Liu, Zhao (2013-09-30). "Topological Flat Band Models and Fractional Chern Insulators". International Journal of Modern Physics B. 27 (24): 1330017. arXiv: 1308.0343 . Bibcode:2013IJMPB..2730017B. doi:10.1142/S021797921330017X. ISSN   0217-9792. S2CID   119282096.
  6. Parameswaran, Siddharth A.; Roy, Rahul; Sondhi, Shivaji L. (2013-11-01). "Fractional quantum Hall physics in topological flat bands". Comptes Rendus Physique. Topological insulators / Isolants topologiques. 14 (9): 816–839. arXiv: 1302.6606 . Bibcode:2013CRPhy..14..816P. doi:10.1016/j.crhy.2013.04.003. ISSN   1631-0705. S2CID   117851815.
  7. 1 2 T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011); D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nature Communications 2, 389 (2011); N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011)
  8. Tang, Evelyn; Mei, Jia-Wei; Wen, Xiao-Gang (6 June 2011). "High-Temperature Fractional Quantum Hall States". Physical Review Letters. 106 (23): 236802. arXiv: 1012.2930 . Bibcode:2011PhRvL.106w6802T. doi: 10.1103/PhysRevLett.106.236802 . eISSN   1079-7114. ISSN   0031-9007. PMID   21770532.
  9. Sun, Kai; Gu, Zhengcheng; Katsura, Hosho; Das Sarma, S. (6 June 2011). "Nearly Flatbands with Nontrivial Topology". Physical Review Letters. 106 (23): 236803. arXiv: 1012.5864 . Bibcode:2011PhRvL.106w6803S. doi: 10.1103/PhysRevLett.106.236803 . eISSN   1079-7114. ISSN   0031-9007. PMID   21770533.
  10. Hafezi, M.; Sørensen, A. S.; Demler, E.; Lukin, M. D. (28 August 2007). "Fractional quantum Hall effect in optical lattices". Physical Review A. 76 (2): 023613. arXiv: 0706.0757 . Bibcode:2007PhRvA..76b3613H. doi:10.1103/PhysRevA.76.023613. eISSN   1094-1622. ISSN   1050-2947.
  11. Möller, G.; Cooper, N. R. (4 September 2009). "Composite Fermion Theory for Bosonic Quantum Hall States on Lattices". Physical Review Letters. 103 (10): 105303. arXiv: 0904.3097 . Bibcode:2009PhRvL.103j5303M. doi:10.1103/PhysRevLett.103.105303. eISSN   1079-7114. ISSN   0031-9007. PMID   19792327.
  12. Hafezi, M.; Sørensen, A. S.; Lukin, M. D.; Demler, E. (27 November 2007). "Characterization of topological states on a lattice with Chern number". Europhysics Letters (EPL). 81 (1): 10005. doi:10.1209/0295-5075/81/10005.
  13. Haldane, F. D. M. (31 October 1988). "Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"". Physical Review Letters. 61 (18): 2015–2018. doi: 10.1103/PhysRevLett.61.2015 . ISSN   0031-9007. PMID   10038961.
  14. Z. Liu, E. J. Bergholtz, H. Fan, and A. M. La ̈uchli, Phys. Rev. Lett. 109, 186805 (2012); A. Sterdyniak, C. Repellin, B. A. Bernevig, and N. Regnault Phys. Rev. B 87, 205137 (2013). M. Udagawa and E. J. Bergholtz, Journal of Statistical Mechanics: Theory and Experiment 2014, P10012 (2014); Y.-H. Wu, J. K. Jain, and K. Sun, Phys. Rev. B 91, 041119 (2015); G. Mo ̈ller and N. R. Cooper, Phys. Rev. Lett. 115, 126401(2015); B. Andrews and G. Mo ̈ller, Phys. Rev. B 97, 035159 (2018).
  15. B. d. z. Jaworowski, N. Regnault, and Z. Liu, Phys. Rev. B 99, 045136 (2019); M. Barkeshli and X.-L. Qi, Phys. Rev. X 2, 031013 (2012); E. J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M. Udagawa, Phys. Rev. Lett. 114, 016806 (2015); Z. Liu, G. Möller, and E. J. Bergholtz, Phys. Rev. Lett. 119, 106801 (2017).
  16. G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi,T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Nature 579, 56 (2020)
  17. E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K. Watanabe, M. P. Zaletel, and A. F. Young, Science 360, 62 (2018), https://science.sciencemag.org/content/360/6384/62.full.pdf; Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf, P. Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrester, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Jarillo- Herrero, and A. Yacoby, Nature 600, 439 (2021).
  18. Anderson, Eric, Feng-Ren Fan, Jiaqi Cai, William Holtzmann, Takashi Taniguchi, Kenji Watanabe, Di Xiao, Wang Yao, and Xiaodong Xu. "Programming correlated magnetic states with gate-controlled moiré geometry." Science (2023): eadg4268.
  19. J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X. Xu, Nature (2023), Nature volume 622, pages 63-68; Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Knu ̈ppel, C. Vaswani, K. Watanabe, T. Taniguchi, K. F. Mak, and J. Shan, “Thermodynamic evidence of fractional Chern insulator in moiré MoTe
    2
    ,” (2023), Nature volume 622, pages 69–73 (2023); Heonjoon Park, Jiaqi Cai, Eric Anderson, Yinong Zhang, Jiayi Zhu, Xiaoyu Liu, Chong Wang et al. "Observation of fractionally quantized anomalous Hall effect." Nature 622, no. 7981 (2023): 74-79.
  20. J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X. Xu, Nature (2023), Nature volume 622, pages 63-68
  21. Heonjoon Park, Jiaqi Cai, Eric Anderson, Yinong Zhang, Jiayi Zhu, Xiaoyu Liu, Chong Wang et al. "Observation of fractionally quantized anomalous Hall effect." Nature 622, no. 7981 (2023): 74-79.
  22. Xu, Fan, et al. "Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe 2." Physical Review X 13.3 (2023): 031037.
  23. F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. Mac- Donald, Phys. Rev. Lett. 122, 086402 (2019)
  24. C. Wang, X.-W. Zhang, X. Liu, Y. He, X. Xu, Y. Ran, T. Cao, and D. Xiao, “Fractional chern insulator in twisted bilayer MoTe
    2
    ,” (2023), arXiv:2304.11864 [cond-mat.str-el]; V. Cr ́epel and L. Fu, "Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides," Phys. Rev. B 107, L201109 (2023); N. Morales-Dura ́n, J. Wang, G. R. Schleder, M. Angeli, Z. Zhu, E. Kaxiras, C. Repellin, and J. Cano, “Pressure–enhanced fractional chern insulators in moiré transition metal dichalcogenides along a magic line,” (2023), arXiv:2304.06669 [cond-mat.str-el]; N. Morales-Dura ́n, N. Wei, and A. H. MacDonald, “Magic angles and fractional chern insulators in twisted homobilayer tmds,” (2023), arXiv:2308.03143 [cond-mat.str-el]; J. Yu, J. Herzog-Arbeitman, M. Wang, O. Vafek, B. A. Bernevig, and N. Regnault, “Fractional chern insulators vs. non-magnetic states in twisted bilayer MoTe
    2
    ,” (2023), arXiv:2309.14429 [cond-mat.mes-hall]