Framsticks

Last updated
Framsticks
Developer(s) Maciej Komosinski and Szymon Ulatowski
Stable release
4.2 / April 20, 2015 (2015-04-20)
Operating system Microsoft Windows, Linux, Mac OS X
Website framsticks.com

Framsticks is a 3D freeware Artificial Life simulator. Organisms consisting of physical structures ("bodies") and control structures ("brains") evolve over time against a user's predefined fitness landscape (for instance, evolving for speed), or spontaneously coevolve in a complex environment. Evolution of organisms occurs primarily through artificial selection, where an intelligent selector chooses the selection parameters and mutation rates. Also the organisms rate of crossing-over can be chosen thus reflecting the sharing of genes by mating in nature. The simulated organisms have genetic scripts inspired by DNA found in living organisms in nature. A user can isolate a particular organism in the gene pool and edit its genotype. Framsticks allows users to design organisms or manually edit the living genetic code of an organism. Users have the ability to seed the environment with energy orbs that the organisms convert to energy and material. Depending on how the organism does in its lifespan determines the future of the virtual gene pool. Gene pools can be exported and shared.

Fitness landscape Model used to visualise relationship between genotypes and reproductive success

In evolutionary biology, fitness landscapes or adaptive landscapes are used to visualize the relationship between genotypes and reproductive success. It is assumed that every genotype has a well-defined replication rate. This fitness is the "height" of the landscape. Genotypes which are similar are said to be "close" to each other, while those that are very different are "far" from each other. The set of all possible genotypes, their degree of similarity, and their related fitness values is then called a fitness landscape. The idea of a fitness landscape is a metaphor to help explain flawed forms in evolution by natural selection, including exploits and glitches in animals like their reactions to supernormal stimuli.

Evolution Change in the heritable characteristics of biological populations over successive generations

Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.

The gene pool is the set of all genes, or genetic information, in any population, usually of a particular species.

Contents

Bodies

The bodies are made up of various building blocks that are assembled according to a genetic script. Building blocks include: a rotator, hinge, muscle, structure, and receptor.

Brains

The brains are basic neural networks that show up as a network of firing neurons. The genetic script serves as the blueprints for the exact assembly and functioning of the neural network.

World

The world or ‘universe’ can be set to height-field editable as blocks and/or steep planes, ‘water’, flat, or a combination of all these and be edited by user as map in simple text-format. It has adjustable gravitation and water-level.

See also

Digital organism self-replicating computer program that mutates and evolves

A digital organism is a self-replicating computer program that mutates and evolves. Digital organisms are used as a tool to study the dynamics of Darwinian evolution, and to test or verify specific hypotheses or mathematical models of evolution. The study of digital organisms is closely related to the area of artificial life.

Artificial life A field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.


Related Research Articles

Genetics Science of genes, heredity, and variation in living organisms

Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in organisms.

Genetic algorithm competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on bio-inspired operators such as mutation, crossover and selection. John Holland introduced genetic algorithms in 1960 based on the concept of Darwin’s theory of evolution; afterwards, his student David E. Goldberg extended GA in 1989.

Molecular evolution The process of change in the sequence composition of cellular molecules across generations

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

Evolutionary computation Trial and error problem solvers with a metaheuristic or stochastic optimization character

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

Gene regulatory network collection of molecular regulators

A gene regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo).

Bio-inspired computing, short for biologically inspired computing, is a field of study that loosely knits together subfields related to the topics of connectionism, social behaviour and emergence. It is often closely related to the field of artificial intelligence, as many of its pursuits can be linked to machine learning. It relies heavily on the fields of biology, computer science and mathematics. Briefly put, it is the use of computers to model the living phenomena, and simultaneously the study of life to improve the usage of computers. Biologically inspired computing is a major subset of natural computation.

Neuroevolution, or neuro-evolution, is a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks (ANN), parameters, topology and rules. It is most commonly applied in artificial life, general game playing and evolutionary robotics. The main benefit is that neuroevolution can be applied more widely than supervised learning algorithms, which require a syllabus of correct input-output pairs. In contrast, neuroevolution requires only a measure of a network's performance at a task. For example, the outcome of a game can be easily measured without providing labeled examples of desired strategies. Neuroevolution can be contrasted with conventional deep learning techniques that use gradient descent on a neural network with a fixed topology.

Devolution, de-evolution, or backward evolution is the notion that species can revert to supposedly more primitive forms over time. The concept relates to the idea that evolution has a purpose (teleology) and is progressive (orthogenesis), for example that feet might be better than hooves or lungs than gills. However, evolutionary biology makes no such assumptions, and natural selection shapes adaptations with no foreknowledge of any kind. It is possible for small changes to be reversed by chance or selection, but this is no different from the normal course of evolution.

Neural network software is used to simulate, research, develop, and apply artificial neural networks, software concepts adapted from biological neural networks, and in some cases, a wider array of adaptive systems such as artificial intelligence and machine learning.

Computational neurogenetic modeling (CNGM) is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biology, as well as engineering.

GENESIS is a simulation environment for constructing realistic models of neurobiological systems at many levels of scale including: sub-cellular processes, individual neurons, networks of neurons, and neuronal systems. These simulations are “computer-based implementations of models whose primary objective is to capture what is known of the anatomical structure and physiological characteristics of the neural system of interest”. GENESIS is intended to quantify the physical framework of the nervous system in a way that allows for easy understanding of the physical structure of the nerves in question. “At present only GENESIS allows parallelized modeling of single neurons and networks on multiple-instruction-multiple-data parallel computers.” Development of GENESIS software spread from its home at Caltech to labs at the University of Texas at San Antonio, the University of Antwerp, the National Centre for Biological Sciences in Bangalore, the University of Colorado, the Pittsburgh Supercomputing Center, the San Diego Supercomputer Center, and Emory University.

Neurorobotics, a combined study of neuroscience, robotics, and artificial intelligence, is the science and technology of embodied autonomous neural systems. Neural systems include brain-inspired algorithms, computational models of biological neural networks and actual biological systems. Such neural systems can be embodied in machines with mechanic or any other forms of physical actuation. This includes robots, prosthetic or wearable systems but also, at smaller scale, micro-machines and, at the larger scales, furniture and infrastructures.

Introduction to evolution A non-technical explanation of the basic concepts and principles of biological evolution

Evolution is the process of change in all forms of life over generations, and evolutionary biology is the study of how evolution occurs. Biological populations evolve through genetic changes that correspond to changes in the organisms' observable traits. Genetic changes include mutations, which are caused by damage or replication errors in organisms' DNA. As the genetic variation of a population drifts randomly over generations, natural selection gradually leads traits to become more or less common based on the relative reproductive success of organisms with those traits.

Evolution in Variable Environment (EVE) is a computer program designed to simulate microbial cellular behavior in various environments. The prediction of cellular responses is a rapidly evolving topic in systems biology and computational biology. The goal is to predict the behavior a particular organism in response to a set of environmental stimuli in silico. Such predictions can have a significant impact on preventive medicine, biotechnology, and microbe re-engineering. Computational prediction of behavior has two major components: the integration and simulation of vast biological networks and the creation of external stimuli. Current limitations of the method are: lack of comprehensive experimental data on the various cellular subsystems and inadequate computational algorithms.

Natural computing, also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials to compute. The main fields of research that compose these three branches are artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial life, DNA computing, and quantum computing, among others.

Applications of evolution

Evolutionary biology, in particular the understanding of how organisms evolve through natural selection, is an area of science with many practical applications. Creationists often claim that the theory of evolution lacks any practical applications; however, this claim has been refuted by scientists.

3D Virtual Creature Evolution evolution simulation program

3D Virtual Creature Evolution, abbreviated to 3DVCE, is an artificial evolution simulation program created by Lee Graham. The website is currently down. Its purpose is to visualize and research common themes in body plans and strategies to achieve a fitness function of the artificial organisms generated and maintained by the system in their given environment. The program was inspired by Karl Sims’ 1994 artificial evolution program, Evolved Virtual Creatures. The program is run through volunteers who download the program from the home website and return information from completed simulations. It is currently only available on Windows and in some cases Linux.

Evolving digital ecological networks

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.

Outline of evolution Hierarchical outline list of articles related to evolution

The following outline is provided as an overview of and topical guide to evolution: