Fraunhofer Institute for Solar Energy Systems

Last updated
Fraunhofer Institute for Solar Energy Systems
Founder(s)Adolf Goetzberger
Established1981
FocusSolar thermal technology, applied optics and coatings, photovoltaics, building technology, hydrogen and fuel cell technology
DirectorAndreas Bett, Hans-Martin Henning
Staff1400
AddressHeidenhofstraße 2
Location
Freiburg
,
Germany
Website http://www.ise.fraunhofer.de/en
[1] [2]

The Fraunhofer Institute for Solar Energy Systems ISE (or Fraunhofer ISE) is an institute of the Fraunhofer-Gesellschaft. Located in Freiburg, Germany, the Institute performs applied scientific and engineering research and development for all areas of solar energy. Fraunhofer ISE has three external branches in Germany which carry out work on solar cell and semiconductor material development: the Laboratory and Service Center (LSC) in Gelsenkirchen, the Technology Center of Semiconductor Materials (THM) in Freiberg, and the Fraunhofer Center for Silicon Photovoltaics (CSP) in Halle. [1] From 2006 to 2016 Eicke Weber was the director of Fraunhofer ISE. With over 1,100 employees, Fraunhofer ISE is the largest institute for applied solar energy research in Europe. The 2012 Operational Budget including investments was 74.3 million euro. [2]

Contents

History

Fraunhofer ISE was founded in 1981 by Adolf Goetzberger in Freiburg, Germany. It was the first non-university establishment for applied solar energy research in Europe. The first areas of focus were the fluorescent collector FLUKO, transparent insulation and the initial steps towards high efficiency silicon and III-V solar cells, silicon thin film solar cells and material research. [3]

Already in 1983, the first fully electronic so-called "ISE inverter" was developed for use in autonomous photovoltaic systems.[ citation needed ] In 1986, the first serial product using fluorescent collectors as a power supply was produced.[ citation needed ] Within the PV small device program, numerous other successful products were developed. When the clean room was put into operation in 1989, the production of high efficiency solar cells began. In 1998, selective solar absorber coatings, which were developed at Fraunhofer ISE for solar thermal collectors, were put into industrial-scale production.[ citation needed ]

In 2011 Fraunhofer ISE celebrated its 30th anniversary. Since its founding, the scientists have received many prestigious prizes and awards for their research results in the field.[ which? ]

Research and development

The solar energy research at Fraunhofer ISE establishes the technical prerequisites for an efficient and environmentally friendly energy supply for industrial as well as threshold and developing countries. The institute is committed to moving away from fossil fuels and nuclear power and moving towards a 100% renewable energy supply with the aim of providing affordable solutions for the energy transformation.

To this purpose, the institute develops materials, components, systems and processes for basic research and beyond. The areas of expertise include the development of production techniques and prototypes, setting up and monitoring demonstration systems and operating indoor and outdoor testing and calibration centers. [2]

The various areas of research at Fraunhofer ISE are categorized into the following business areas:

Energy Efficient Buildings
At Fraunhofer ISE, energy-efficient buildings are one of the main areas of research. Teaming up with architects, expert planners and the industry, the researchers at Fraunhofer ISE optimize the performance of existing building and develop the buildings of tomorrow with consideration to the economic aspects, the energy efficiency and the user comfort. Through its involvement in the International Energy Agency (IEA), the Institute contributes in the establishment of the international boundary conditions for the realization of these concepts. In this business area, many disciplines come together: from material research and coating development through to component and system development and finally the required tests. [2]

Applied Optics and functional Surfaces
Solar energy systems convert solar radiation incident on the earth into thermal, electrical or chemical energy. In order to better transmit, reflect, absorb, filter, redirect or concentrate the incoming radiation, Fraunhofer ISE develops optical components and systems. This business area serves as an interdisciplinary field and serves many areas of solar technology: windows and facades, solar thermal collectors, concentrator systems for photovoltaics and solar power plants as well as photovoltaic module technology. [2]

Solar Thermal Systems
This business area covers the markets of low and high temperature applications. Solar thermal collectors and collector systems with flat or evacuated tube collectors find numerous applications in the practice. These include process water and solar heating systems, cooling and ventilation systems and sea water desalination systems. Also façade-integrated collectors are implemented. With linear concentrating collectors, operating temperatures from 150 °C to over 400 °C are achieved. Both trough and parabolic collectors are not only used for solar thermal power production in large power plants, but also in simpler and more cost-effective plants for the production of process heat, process steam and driving heat for absorption chillers. [2]

Silicon Photovoltaics
Especially due to the market introduction programs in Japan and Germany, the role of photovoltaics is gaining more and more on importance. More than 85% of the solar cells produced worldwide are based on crystalline silicon. The price-performance ratio, long-term stability and the cost-reduction potential indicate that this top performer in the terrestrial photovoltaic market will retain its place as market leader longer than just the next decade. Fraunhofer ISE's expertise ranges over the entire value chain of crystalline silicon photovoltaics, starting from material development and crystallization, through to solar cell processing and photovoltaic module technology. [2]

Photovoltaic Modules and Systems
Module technology converts solar cells into a robust product for reliable operation in PV power plants. Fraunhofer ISE supports the product development concentrating on increasing efficiencies, reducing costs and achieving the highest reliability. Over and above, the Institute offers its services for quality assurance of modules and power plants. [2]

Alternative Photovoltaic Technologies
In addition to silicon photovoltaics, the solar cell research at Fraunhofer ISE also extends to other photovoltaic technologies: With III-V based semiconductors like gallium indium phosphide, aluminum gallium arsenide or gallium arsenide, the highest efficiencies can be reached today. The technology of the dye solar cells has developed well beyond the laboratory stage and organic solar cells are attractive especially due to the expected low manufacturing costs. [2]

Renewable Power Supply
The construction of grid-connected systems is the largest market for the photovoltaic branch today. The Institute provides consultancy services for system planning, characterizes solar modules and carries out the technical analysis and performance testing of photovoltaic systems. [2]

Off-grid power supplies also are a focus of the ongoing research at the institute. People living in remote rural areas, the countless number of telecommunication systems, environmental measurement technology as well as portable electronic devices require an autonomous power supply, independent of the grid. Fraunhofer ISE develops renewable energy systems for this purpose. [2]

Fraunhofer ISE also performs research in the area of power electronics and controls. This includes inverter development and testing in a modern power electronics laboratory as well as research in the field of energy management including smart metering and smart grids. [2]

In future, vehicles will run partly or completely on electricity and draw their energy from the grid (electric and plug-in). Fraunhofer ISE is working at the interface between the vehicles and the grid on concepts for an environmentally acceptable power supply and the optimal integration of the vehicles into the electricity grid, including metering and billing systems. [2]

Hydrogen Technology
In a fuel cell, hydrogen reacts with oxygen and sets useful energy free in the form of electricity and heat. Since hydrogen does not exist in its pure form in nature, it must be produced from one of its many chemical compounds. At Fraunhofer ISE in the area of hydrogen technology, the research focuses on innovative technologies for hydrogen generation and on processes for the highly efficient conversion of hydrogen into electricity and heat using the most modern equipment. Together with partners from industry and science, components and complete fuel cell systems are developed for autonomous, portable as well as mobile applications. [1] [2] [4]

Service Units

Presently the following certified test labs provide testing and calibration services at the laboratories:

Other service establishments at the laboratories are:

Cooperation

The Institute is one of the founding members and the Member-in-Charge of the Fraunhofer Energy Alliance, comprising sixteen Fraunhofer institutes with expertise in energy technology and energy research.

The Institute is a member of the ForschungsVerbund Erneuerbare Energien (FVEE) and the European Renewable Energy Research Centres Agency (EUREC), as well as other alliances.

The Institute maintains a close cooperation with the Material Research Center of the University of Freiburg, which assists the Institute with fundamental research. Th institute director holds a faculty position at that University as professor of physics and applied sciences.

Spin-Offs

To date, 12 spin-off companies have been founded from the applied research results at Fraunhofer ISE. [5] Among them are the following:

Staff, Infrastructure and Financing

The laboratory has a staff of 1139, of whom 439 hold permanent positions. (as of 04/2012).

The research institute has a net floor area of 21,000 m² which contains offices, laboratories and test fields. New labs and office space are presently under construction.

The 2011 operational budget totaled €61.3 million. Just five percent of the operational budget was basic funding, 90% from German federal funds and 10% from German state funds. About 50% was from contract research with industry; the remainder stemmed from public and other sources. In 2011, annual investments amounted to €7.7 million. (as of 04/2012) [2]

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Photovoltaics</span> Method to produce electricity from solar radiation

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

<span class="mw-page-title-main">National Renewable Energy Laboratory</span> United States national laboratory

The National Renewable Energy Laboratory (NREL) in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation. NREL is a federally funded research and development center sponsored by the Department of Energy and operated by the Alliance for Sustainable Energy, a joint venture between MRIGlobal and Battelle. Located in Golden, Colorado, NREL is home to the National Center for Photovoltaics, the National Bioenergy Center, and the National Wind Technology Center.

In the 19th century, it was observed that the sunlight striking certain materials generates detectable electric current – the photoelectric effect. This discovery laid the foundation for solar cells. Solar cells have gone on to be used in many applications. They have historically been used in situations where electrical power from the grid was unavailable.

<span class="mw-page-title-main">Solar cell</span> Photodiode used to produce power from light on a large scale

A solar cell or photovoltaic cell is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a form of photoelectric cell, a device whose electrical characteristics vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". Almost all commercial PV cells consist of crystalline silicon, with a market share of 95%. Cadmium telluride thin-film solar cells account for the remainder. The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.

<span class="mw-page-title-main">Solar panel</span> Assembly of photovoltaic cells used to generate electricity

A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. The electrons flow through a circuit and produce direct current (DC) electricity, which can be used to power various devices or be stored in batteries. Solar panels are also known as solar cell panels, solar electric panels, or PV modules.

<span class="mw-page-title-main">Building-integrated photovoltaics</span> Photovoltaic materials used to replace conventional building materials

Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or façades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology. The advantage of integrated photovoltaics over more common non-integrated systems is that the initial cost can be offset by reducing the amount spent on building materials and labor that would normally be used to construct the part of the building that the BIPV modules replace. In addition, BIPV allows for more widespread solar adoption when the building's aesthetics matter and traditional rack-mounted solar panels would disrupt the intended look of the building.

<span class="mw-page-title-main">Solar power in Germany</span>

Solar power accounted for an estimated 10.7% electricity in Germany in 2022, up from 1.9% in 2010 and less than 0.1% in 2000.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power, also known as solar electricity, is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Solar panels use the photovoltaic effect to convert light into an electric current. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. Many utility-scale PV systems use tracking systems that follow the sun's daily path across the sky to generate more electricity than fixed-mounted systems.

<span class="mw-page-title-main">Thin-film solar cell</span> Type of second-generation solar cell

Thin-film solar cells are a type of solar cell made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.

<span class="mw-page-title-main">Growth of photovoltaics</span> Worldwide growth of photovoltaics

Between 1992 and 2023, the worldwide usage of photovoltaics (PV) increased exponentially. During this period, it evolved from a niche market of small-scale applications to a mainstream electricity source. From 2016-2022 it has seen an annual capacity and production growth rate of around 26%- doubling approximately every three years.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

<span class="mw-page-title-main">Concentrator photovoltaics</span> Use of mirror or lens assemblies to generate current from multi-junction solar cells

Concentrator photovoltaics (CPV) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency.

<span class="mw-page-title-main">Solar cell research</span> Research in the field of photovoltaics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

Amonix, Inc. was a solar power system developer based in Seal Beach, California. The company manufactured concentrator photovoltaic (CPV) products designed for installation in sunny and dry climates. CPV products convert sunlight into electrical energy in the same way that conventional solar photovoltaic technology does, except that they use optics to focus the solar radiation before the light is absorbed by solar cells. According to a comparative study of energy production of solar technologies, CPV systems require no water for energy production and produce more energy per megawatt (MW) installed than traditional PV systems. Amonix had nearly 70 megawatts of CPV solar power systems deployed globally, including Southwestern U.S. and Spain.

The following outline is provided as an overview of and topical guide to solar energy:

Potential-induced degradation (PID) is a potential-induced performance degradation in crystalline photovoltaic modules, caused by so-called stray currents. This effect may cause power loss of up to 30 percent.

The Silicon Module Super League (SMSL) later the Solar Module Super League is a group of major crystalline silicon (c-Si) module suppliers in the solar PV industry. The 'big six' industry group members were Canadian Solar, Hanwha Q CELLS, JA Solar, Jinko Solar, and Trina Solar. LONGi the world's largest solar monocrystalline silicon manufacturer and GCL, the world's largest solar poly crystalline silicon manufacturer, both joined the SMSL in mid-2016. As of February 2019, PVTech added First Solar and Risen Energy to the list of SMSL manufacturers.

References

  1. 1 2 3 "Photovoltaic Guide" (PDF). Baden-Württemberg International, Agency for International Economic and Scientific Cooperation. Retrieved 13 June 2012.[ permanent dead link ]
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "Fraunhofer ISE Annual Report 2011" (PDF). Fraunhofer Institute for Solar Energy Systems ISE, Freiburg/Germany. Retrieved 13 June 2012.
  3. Janzing, Bernward (2011). Solare Zeiten. Freiburg/Germany: Bernward Janzing. ISBN   978-3-9814265-0-2.
  4. Franke, Wolf D. Kompendium Erneuerbare Energien. Frankfurt am Main/Germany: FAZ-Inst. für Management-, Markt- und Medieninformationen, 2009. ISBN   978-3-89981-215-2.
  5. "Spin-offs - Fraunhofer ISE". www.ise.fraunhofer.de. Retrieved 31 May 2016.