Free fall machine

Last updated
free fall machine
Other namesFFM
UsesAllows biological samples to develop in free fall, thus mitigating the effect of gravity.
Inventor D. Mesland
Related items Clinostat, Random positioning machine, Large diameter centrifuge

The free fall machine (FFM) is designed to permit the development of small biological sample such as cell cultures with a simulated effect of micro-gravity, under free fall conditions. [1]

Contents

Description

The free fall machine (FFM) addresses some of the problems of the simple horizontal clinostat or random positioning machines (RPM). In a typical machine samples are allowed to cycle between free fall for about a metre down a column (micro-gravity simulation, near "0 g") and a "bounce" back to the top of the column that is intended to be so fast (c. 20 g for 20 ms) that it is undetected by the biological sample. Long duration of hyper-gravity is often simulated by machines such as the large diameter centrifuge (LDC) at ESA. To simulate partial-gravity (between simulated 0 and Earth's gravity, 1, such as Mars or Moon gravitational strengths) conditions, an RPM can also be used. The sample therefore effectively grows at near 0 g.

See also

Related Research Articles

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of geological engineering.

<span class="mw-page-title-main">Centrifuge</span> Device using centrifugal force to separate fluids

A centrifuge is a device that uses centrifugal force to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities or liquids from solids. It works by causing denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and moved to the centre. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top. A centrifuge can be a very effective filter that separates contaminants from the main body of fluid.

<span class="mw-page-title-main">Centrifugation</span> Mechanical process

Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate away from the axis of the centrifuge, while the less dense components of the mixture migrate towards the axis. Chemists and biologists may increase the effective gravitational force of the test tube so that the precipitate (pellet) will travel quickly and fully to the bottom of the tube. The remaining liquid that lies above the precipitate is called a supernatant or supernate.

g-force Term for accelerations felt as weight and measurable by accelerometers

The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g equal to the conventional value of gravitational acceleration on Earth, g, of about 9.8 m/s2. Since g-forces indirectly produce weight, any g-force can be described as a "weight per unit mass". When the g-force is produced by the surface of one object being pushed by the surface of another object, the reaction force to this push produces an equal and opposite weight for every unit of each object's mass. The types of forces involved are transmitted through objects by interior mechanical stresses. Gravitational acceleration is the cause of an object's acceleration in relation to free fall.

<span class="mw-page-title-main">Differential centrifugation</span> Method of separating particles in a mixture

In biochemistry and cell biology, differential centrifugation is a common procedure used to separate organelles and other sub-cellular particles based on their sedimentation rate. Although often applied in biological analysis, differential centrifugation is a general technique also suitable for crude purification of non-living suspended particles. In a typical case where differential centrifugation is used to analyze cell-biological phenomena, a tissue sample is first lysed to break the cell membranes and release the organelles and cytosol. The lysate is then subjected to repeated centrifugations, where particles that sediment sufficiently quickly at a given centrifugal force for a given time form a compact "pellet" at the bottom of the centrifugation tube.

<span class="mw-page-title-main">Micro-g environment</span> Environment in which the force of gravity is extremely small

The term micro-g environment is more or less synonymous with the terms weightlessness and zero-g, but emphasising that g-forces are never exactly zero—just very small. The symbol for microgravity, μg, was used on the insignias of Space Shuttle flights STS-87 and STS-107, because these flights were devoted to microgravity research in low Earth orbit.

<span class="mw-page-title-main">Centrifuge Accommodations Module</span> Cancelled element of the International Space Station

The Centrifuge Accommodations Module (CAM) is a cancelled element of the International Space Station. Although the module was planned to contain several parts, the 2.5 m (8.2 ft) centrifuge still was considered the most important capability of the module.

<span class="mw-page-title-main">Artificial gravity</span> Use of circular rotational force to mimic gravity

Artificial gravity is the creation of an inertial force that mimics the effects of a gravitational force, usually by rotation. Artificial gravity, or rotational gravity, is thus the appearance of a centrifugal force in a rotating frame of reference, as opposed to the force experienced in linear acceleration, which by the equivalence principle is indistinguishable from gravity. In a more general sense, "artificial gravity" may also refer to the effect of linear acceleration, e.g. by means of a rocket engine.

<span class="mw-page-title-main">Biolab</span> Science payload fitted inside the Columbus laboratory of the ISS

Biolab is a single-rack multi-user science payload designed for use in the Columbus laboratory of the International Space Station. Biolab support biological research on small plants, small invertebrates, microorganisms, animal cells, and tissue cultures. It includes an incubator equipped with centrifuges in which the preceding experimental subjects can be subjected to controlled levels of accelerations.

<span class="mw-page-title-main">Clinostat</span>

A clinostat is a device which uses rotation to negate the effects of gravitational pull on plant growth (gravitropism) and development (gravimorphism). It has also been used to study the effects of microgravity on cell cultures, animal embryos and spider webs.

<span class="mw-page-title-main">Particle size</span> Notion for comparing dimensions of particles in different states of matter

Particle size is a notion introduced for comparing dimensions of solid particles, liquid particles (droplets), or gaseous particles (bubbles). The notion of particle size applies to particles in colloids, in ecology, in granular material, and to particles that form a granular material.

<span class="mw-page-title-main">Rotating wheel space station</span>

A rotating wheel space station, also known as a von Braun wheel, is a concept for a hypothetical wheel-shaped space station. Originally proposed by Konstantin Tsiolkovsky in 1903, the idea was expanded by Herman Potočnik in 1929.

<span class="mw-page-title-main">High-g training</span>

High-g training is done by aviators and astronauts who are subject to high levels of acceleration ('g'). It is designed to prevent a g-induced loss of consciousness (g-LOC), a situation when the action of g-forces moves the blood away from the brain to the extent that consciousness is lost. Incidents of acceleration-induced loss of consciousness have caused fatal accidents in aircraft capable of sustaining high-g for considerable periods.

<span class="mw-page-title-main">Weightlessness</span> Absence of stress and strain resulting from externally applied mechanical contact-forces

Weightlessness is the complete or near-complete absence of the sensation of weight. It is also termed zero G-force or zero-G.

<span class="mw-page-title-main">Random positioning machine</span>

A random positioning machine, or RPM, rotates biological samples along two independent axes to change their orientation in space in complex ways and so eliminate the effect of gravity.

<span class="mw-page-title-main">Centrifugal extractor</span>

A centrifugal extractor—also known as a centrifugal contactor or annular centrifugal contactor—uses the rotation of the rotor inside a centrifuge to mix two immiscible liquids outside the rotor and to separate the liquids in the field of gravity inside the rotor. This way, a centrifugal extractor generates a continuous extraction from one liquid phase into another liquid phase.

Interplanetary contamination refers to biological contamination of a planetary body by a space probe or spacecraft, either deliberate or unintentional.

<span class="mw-page-title-main">Hypergravity</span> Environment where Earths surface gravity is exceeded

Hypergravity is defined as the condition where the force of gravity exceeds that on the surface of the Earth. This is expressed as being greater than 1 g. Hypergravity conditions are created on Earth for research on human physiology in aerial combat and space flight, as well as testing of materials and equipment for space missions. Manufacturing of titanium aluminide turbine blades in 20 g is being explored by researchers at the European Space Agency (ESA) via an 8-meter wide Large Diameter Centrifuge (LDC).

<span class="mw-page-title-main">Locomotion in space</span> Movement of astronauts bodies in space

Locomotion in space includes any variety of actions or methods used to move one's body through an environment with microgravity conditions. Locomotion in these conditions is different from locomotion in Earth's gravity. There are many factors that contribute to these differences, and they are crucial when researching long-term survival of humans in space.

The large diameter centrifuge, or LDC, is any centrifuge extending several meters, which can rotate samples to change their acceleration in space to enhance the effect of gravity. Large diameter centrifuges are used to understand the effect of hyper-gravity on biological samples, including and not limiting to plants, organs, bacteria, and astronauts or non-biological samples to undertake experiments in the field of fluid dynamics, geology, biochemistry and more.

References

  1. Schwarzenberg M, Pippia P, Meloni MA, Cossu G, Cogoli-Greuter M, Cogoli A. (1999). Signal transduction in T lymphocytes--a comparison of the data from space, the free fall machine and the random positioning machine. Adv Space Res. 24(6): 793-800