Friction stir spot welding

Last updated
Friction stir spot welding principle Friction Stir Spot Welding (FSSW) Principle.jpg
Friction stir spot welding principle

Friction stir spot welding (FSSW) is a pressure welding process that operates below the melting point of the workpieces. It is a variant of friction stir welding. [1]

Contents

Process description

Friction stir spot welding (FSSW) of stamped sheets Friction stir spot welding (FSSW) of stamped sheets.jpg
Friction stir spot welding (FSSW) of stamped sheets

In friction stir spot welding, individual spot welds are created by pressing a rotating tool with high force onto the top surface of two sheets that overlap each other in the lap joint. The frictional heat and the high pressure plastify the workpiece material, so that the tip of the pin plunges into the joint area between the two sheets and stirs-up the oxides. The pin of the tool is plunged into the sheets until the shoulder is in contact with the surface of the top sheet. The shoulder applies a high forging pressure, which bonds the components metallurgically without melting. After a short dwell time, the tool is pulled out of the workpieces again so that a spot weld can be made about every 5 seconds. [2]

The tool consists of a rotating pin and a shoulder. The pin is the part of the tool that penetrates into the materials. Both the pin and the shoulder may be profiled to push the plasticized material in a particular direction and to efficiently break-up and disperse the oxide skins on the adjacent surfaces. After retracting the tool, a hole remains, when using one-piece tools, which have already proven themselves as very realiable in the automotive and the rail vehicle industry. [3] Often the rotating tool is surrounded by a non-rotating clamping ring with which the workpieces are pressed firmly against each other before and during welding by applying a clamping force. The clamping ring can also be used to reduce the pressing out of plasticized material to avoid the formation of burrs or beads to apply inert gas or to cool the tool via compressed air. [4]

The most important process parameters are the speed and contact pressure. This results in the plunge feed rate for a given workpiece material. Modern spot welding guns can be used either via position control or force control or via a product-specific programmed force-displacement control. Often, position control is used until a certain displacement is reached, and then the control system is switched to force control during the dwell time. Even during the force-controlled dwell time, certain position values can be specified, which should not be undermatched or exceeded. [2]

Spot welding guns

FSSW gun by Stirtec attached to a machine frame Friction stir spot welding (FSSW) gun by Stirtec GmbH.jpg
FSSW gun by Stirtec attached to a machine frame

Friction stir spot welding is performed with a spot welding gun, which is mounted on a console, flanged to an articulated robot or manually operated with a balancer to the component. [2]

Process advantages

Friction spot welding is characterized by a number of process advantages. Any damage to the material caused by the extreme heat, such as that produced by laser or arc welding, will not occur. In particular, in the case of artificially aged aluminum alloys, the strength in the weld seam and the heat-affected zone is much higher than in conventional welding methods. [2]

Industrial use

Friction stir spot welds have a high strength, so they are even suitable for parts that are exposed to particularly high loads. In addition to automotive and rail vehicle construction, the aerospace industry is developing the process e.g. for welding cockpit doors for helicopters. [3] In the electrical industry aluminum and copper can be friction stir spot welded. Other applications are in façade and furniture manufacture, where the low heat input, especially in anodized sheets, leads to excellent optical properties. [2]

Related Research Articles

Welding fabrication or sculptural process for joining materials

Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature metal-joining techniques such as brazing and soldering, which do not melt the base metal.

Spot welding A process in which contacting metal surfaces are joined by heat from resistance to electric current

Spot welding is a type of electric resistance welding used to weld various sheet metal products, through a process in which contacting metal surface points are joined by the heat obtained from resistance to electric current.

Metalworking process of making items from metal; production and processing of shaped workpieces made of metals

Metalworking is the process of working with metals to create individual parts, assemblies, or large-scale structures. The term covers a wide range of work from large ships and bridges to precise engine parts and delicate jewelry. It therefore includes a correspondingly wide range of skills, processes, and tools.

Ultrasonic welding welding process

Ultrasonic welding is an industrial technique whereby high-frequency ultrasonic acoustic vibrations are locally applied to workpieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, and especially for joining dissimilar materials. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. When applied to metals, a notable characteristic of this method is that the temperature stays well below the melting point of the involved materials thus preventing any unwanted properties which may arise from high temperature exposure of the materials.

Plastic welding welding of semi-finished plastic materials

Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat. Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials. Based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics can be classified as external and internal heating methods, as shown in Fig 1.

Drilling cutting process that uses a drill bit to cut a hole of circular cross-section in solid materials

Drilling is a cutting process that uses a drill bit to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.

Friction welding (FRW) is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Because no melting occurs, friction welding is not a fusion welding process in the traditional sense, but more of a forge welding technique. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications.

Friction stir welding process to join two surfaces without melting

Friction stir welding (FSW) is a solid-state joining process that uses a non-consumable tool to join two facing workpieces without melting the workpiece material. Heat is generated by friction between the rotating tool and the workpiece material, which leads to a softened region near the FSW tool. While the tool is traversed along the joint line, it mechanically intermixes the two pieces of metal, and forges the hot and softened metal by the mechanical pressure, which is applied by the tool, much like joining clay, or dough. It was primarily used on wrought or extruded aluminium and particularly for structures which need very high weld strength. FSW is capable of joining aluminium alloys, copper alloys, titanium alloys, mild steel, stainless steel and magnesium alloys. More recently, it was successfully used in welding of polymers. In addition, joining of dissimilar metals such as aluminium to magnesium alloys has been recently achieved by FSW. Application of FSW can be found in modern shipbuilding, trains, and aerospace applications.

Sheet metal Metal formed by an industrial process into thin, flat pieces. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes.

Sheet metal is metal formed by an industrial process into thin, flat pieces. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes. Countless everyday objects are fabricated from sheet metal. Thicknesses can vary significantly; extremely thin sheets are considered foil or leaf, and pieces thicker than 6 mm (0.25 in) are considered plate steel or "structural steel".

Electric resistance welding (ERW) is a welding process where metal parts in contact are permanently joined by heating them with an electric current, melting the metal at the joint. Electric resistance welding is widely used, for example, in manufacture of steel pipe and in assembly of bodies for automobiles. The electric current can be supplied to electrodes that also apply clamping pressure, or may be induced by an external magnetic field. The electric resistance welding process can be further classified by the geometry of the weld and the method of applying pressure to the joint: spot welding, seam welding, flash welding, projection welding, for example. Some factors influencing heat or welding temperatures are the proportions of the workpieces, the metal coating or the lack of coating, the electrode materials, electrode geometry, electrode pressing force, electrical current and length of welding time. Small pools of molten metal are formed at the point of most electrical resistance as an electrical current is passed through the metal. In general, resistance welding methods are efficient and cause little pollution, but their applications are limited to relatively thin materials.

Friction stud welding

Friction stud welding is a solid phase welding technique involving a stud or appurtenance being rotated at high speed while being forced against a substrate, generating heat by friction. The metal surfaces reach a temperature at which they flow plastically under pressure, surface impurities are expelled and a forged weld is formed.

Tube bending

Tube bending is any metal forming processes used to permanently form pipes or tubing. Tube bending may be form-bound or use freeform-bending procedures, and it may use heat supported or cold forming procedures.

Friction stir processing

Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into the workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. The precursor of this technique, friction stir welding, is used to join multiple pieces of metal without creating the heat affected zone typical of fusion welding.

Metal spinning

Metal spinning, also known as spin forming or spinning or metal turning most commonly, is a metalworking process by which a disc or tube of metal is rotated at high speed and formed into an axially symmetric part. Spinning can be performed by hand or by a CNC lathe.

Diffusion bonding

Diffusion bonding or diffusion welding is a solid-state welding technique used in metalworking, capable of joining similar and dissimilar metals. It operates on the principle of solid-state diffusion, wherein the atoms of two solid, metallic surfaces intersperse themselves over time. This is typically accomplished at an elevated temperature, approximately 50-70% of the absolute melting temperature of the materials. Diffusion bonding is usually implemented by applying high pressure, in conjunction with necessarily high temperature, to the materials to be welded; the technique is most commonly used to weld "sandwiches" of alternating layers of thin metal foil, and metal wires or filaments. Currently, the diffusion bonding method is widely used in the joining of high-strength and refractory metals within the aerospace and nuclear industries.

Vibration welding refers to a process in which two workpieces are brought in contact under pressure, and a reciprocating motion (vibration) is applied along the common interface in order to generate heat. The resulting heat melts the workpieces, and they become welded when the vibration stops and the interface cools. Most machinery operates at 120 Hz, although equipment is available that runs between 100–240 Hz. Vibration can be achieved either through linear vibration welding, which uses a one dimensional back and forth motion, or orbital vibration welding which moves the pieces in small orbits relative to each other. Linear vibration welding is more common due to simpler and relatively cheaper machinery required.

Spin welding is a form of friction welding used to join thermoplastic parts. The parts to be welded must be round, and in plane with each other. Like all other welding methods this process utilizes heat, time, and pressure to create a weld joint. Heat is generated via internal friction generated between the two parts when rotating and subjected to a load normal to the weld joint. This frictional heat causes the plastic to melt and a bond to be created.

Aluminum joining

Aluminum alloys are often chosen due to their high strength-to-weight ratio, corrosion resistance, low cost, high thermal and electrical conductivity. There are a variety of techniques to join aluminum including mechanical fasteners, welding, adhesive bonding, brazing, soldering and friction stir welding (FSW), etc. Various techniques are used based on the cost and strength required for the joint. In addition, process combinations can performed to provide means for difficult to join assemblies and to reduce certain process limitations.

Radio-frequency welding, also known as dielectric welding and high-frequency welding, is a plastic welding process that utilizes high-frequency electric fields to induce heating and melting of thermoplastic base materials. The electric field is applied by a pair of electrodes after the parts being joined are clamped together. The clamping force is maintained until the joint solidifies. Advantages of this process are fast cycle times, automation, repeatability, and good weld appearance. Only plastics which have dipoles can be heated using radio waves and therefore not all plastics are able to be welded using this process. Also, this process is not well suited for thick or overly complex joints. The most common use of this process is lap joints or seals on thin plastic sheets or parts.

Dissimilar friction stir welding

Dissimilar friction stir welding (DFSW) is the application of friction stir welding (FSW), invented in The Welding Institute (TWI) in 1991, to join different base metals including aluminum, copper, steel, titanium, magnesium and other materials. It is based on solid state welding that means there is no melting. DFSW is based on a frictional heat generated by a simple tool in order to soften the materials and stir them together using both tool rotational and tool traverse movements. In the beginning, it is mainly used for joining of aluminum base metals due to existence of solidification defects in joining them by fusion welding methods such as porosity along with thick Intermetallic compounds. DFSW is taken into account as an efficient method to join dissimilar materials in the last decade. There are many advantages for DFSW in compare with other welding methods including low-cost, user-friendly, and easy operation procedure resulting in enormous usages of friction stir welding for dissimilar joints. Welding tool, base materials, backing plate (fixture), and a milling machine are required materials and equipment for DFSW. On the other hand, other welding methods, such as Shielded Metal Arc Welding (SMAW) typically need highly professional operator as well as quite expensive equipment.

References

  1. AluStir: Friction Stir Spot Welding.
  2. 1 2 3 4 5 Stephan Kallee und Ozan Caliskanoglu: Rührreibpunktschweißen im Fahrzeugbau: Neue Möglichkeiten. Der Praktiker, 11/2017, p. 548–551.
  3. 1 2 John Sprovieri: Friction stir spot welding. Assembly magazine, BNP Media, 7 April 2016.
  4. ISO/FDIS 18785 (E): Friction stir spot welding — Aluminium — Parts 1–5, IIW Commission III, chaired by IIW.