Fulminating silver

Last updated

Fulminating silver is a historic name which may apply to a number of silver based explosives which "fulminate" or detonate easily and violently. It has no exact chemical or dictionary definition, but may refer to:

The stability of many of these compounds can vary depending on how they are stored or handled, with levels of hydration often being a major factor. [1]

Related Research Articles

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

Carbon compounds are defined as chemical substances containing carbon. More compounds of carbon exist than any other chemical element except for hydrogen. Organic carbon compounds are far more numerous than inorganic carbon compounds. In general bonds of carbon with other elements are covalent bonds. Carbon is tetravalent but carbon free radicals and carbenes occur as short-lived intermediates. Ions of carbon are carbocations and carbanions are also short-lived. An important carbon property is catenation as the ability to form long carbon chains and rings.

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Silver</span> Chemical element, symbol Ag and atomic number 47

Silver is a chemical element with the symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. The metal is found in the Earth's crust in the pure, free elemental form, as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining.

<span class="mw-page-title-main">Mercury(II) fulminate</span> Chemical compound

Mercury(II) fulminate, or Hg(CNO)2, is a primary explosive. It is highly sensitive to friction, heat and shock and is mainly used as a trigger for other explosives in percussion caps and detonators. Mercury(II) cyanate, though its chemical formula is identical, has a different atomic arrangement; the cyanate and fulminate anions are isomers.

<span class="mw-page-title-main">Detonator</span> Device used to trigger an explosion

A detonator, frequently called a blasting cap, is a small sensitive device used to detonate a larger, more powerful but relatively insensitive secondary explosive of an explosive device used in commercial mining, excavation, demolition, etc.

<span class="mw-page-title-main">Silver nitrate</span> Chemical compound

Silver nitrate is an inorganic compound with chemical formula AgNO
3
. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.

<span class="mw-page-title-main">Silver fulminate</span> High explosive used in bang snaps

Silver fulminate (AgCNO) is the highly explosive silver salt of fulminic acid.

Pseudohalogens are polyatomic analogues of halogens, whose chemistry, resembling that of the true halogens, allows them to substitute for halogens in several classes of chemical compounds. Pseudohalogens occur in pseudohalogen molecules, inorganic molecules of the general forms PsPs or Ps–X, such as cyanogen; pseudohalide anions, such as cyanide ion; inorganic acids, such as hydrogen cyanide; as ligands in coordination complexes, such as ferricyanide; and as functional groups in organic molecules, such as the nitrile group. Well-known pseudohalogen functional groups include cyanide, cyanate, thiocyanate, and azide.

<span class="mw-page-title-main">Fulminate</span> Chemical compounds containing an –O–N≡C group

Fulminates are chemical compounds which include the fulminate ion. The fulminate ion is a pseudohalic ion because its charge and reactivity are similar to those of the halogens. Due to the instability of the ion, fulminate salts are friction-sensitive explosives. The best known is mercury(II) fulminate, which has been used as a primary explosive in detonators. Fulminates can be formed from metals, such as silver and mercury, dissolved in nitric acid and reacted with ethanol. The weak single nitrogen-oxygen bond is responsible for their instability. Nitrogen very easily forms a stable triple bond to another nitrogen atom, forming nitrogen gas.

<span class="mw-page-title-main">Cyanate</span> Anion with formula OCN and charge –1

Cyanate is an anion with the structural formula [O−C≡N], usually written OCN. It also refers to any salt containing it, such as ammonium cyanate.

<span class="mw-page-title-main">Contact explosive</span> Substance which explodes when exposed to small amounts of energy

A contact explosive is a chemical substance that explodes violently when it is exposed to a relatively small amount of energy. Though different contact explosives have varying amounts of energy sensitivity, they are all much more sensitive relative to other kinds of explosives. Contact explosives are a part of a group of explosives called primary explosives, which are also very sensitive to stimuli but not to the degree of contact explosives. The extreme sensitivity of contact explosives is due to either chemical composition, bond type, or structure.

<span class="mw-page-title-main">Silver carbonate</span> Chemical compound

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

<span class="mw-page-title-main">Silver azide</span> Chemical compound

Silver azide is the chemical compound with the formula AgN3. It is a silver(I) salt of hydrazoic acid. It forms a colorless crystals. Like most azides, it is a primary explosive.

<span class="mw-page-title-main">Silver compounds</span> Chemical compounds containing silver

Silver is a relatively unreactive metal, although it can form several compounds. The common oxidation states of silver are (in order of commonness): +1 (the most stable state; for example, silver nitrate, AgNO3); +2 (highly oxidising; for example, silver(II) fluoride, AgF2); and even very rarely +3 (extreme oxidising; for example, potassium tetrafluoroargentate(III), KAgF4). The +3 state requires very strong oxidising agents to attain, such as fluorine or peroxodisulfate, and some silver(III) compounds react with atmospheric moisture and attack glass. Indeed, silver(III) fluoride is usually obtained by reacting silver or silver monofluoride with the strongest known oxidizing agent, krypton difluoride.

<span class="mw-page-title-main">Silver acetylide</span> Chemical compound

Silver acetylide is an inorganic chemical compound with the formula Ag2C2, a metal acetylide. The compound can be regarded as a salt of the weak acid, acetylene. The salt's anion consists of two carbon atoms linked by a triple bond. The alternate name "silver carbide" is rarely used, although the analogous calcium compound CaC2 is called calcium carbide. Silver acetylide is a primary explosive.

<span class="mw-page-title-main">Ammonium permanganate</span> Chemical compound

Ammonium permanganate is the chemical compound NH4MnO4, or NH3·HMnO4. It is a water soluble, violet-brown or dark purple salt.

Explosophores are functional groups in organic chemistry that give organic compounds explosive properties.

<span class="mw-page-title-main">Silver nitride</span> Chemical compound

Silver nitride is an explosive chemical compound with symbol Ag3N. It is a black, metallic-looking solid which is formed when silver oxide or silver nitrate is dissolved in concentrated solutions of ammonia, causing formation of the diammine silver complex which subsequently breaks down to Ag3N. The standard free energy of the compound is about +315 kJ/mol, making it an endothermic compound which decomposes explosively to metallic silver and nitrogen gas.

<span class="mw-page-title-main">Iodine azide</span> Chemical compound

Iodine azide is an explosive inorganic compound, which in ordinary conditions is a yellow solid. Formally, it is an inter-pseudohalogen.

References

  1. Ennis, John L.; Shanley, Edward S. (January 1991). "On hazardous silver compounds". Journal of Chemical Education. 68 (1): A6. Bibcode:1991JChEd..68....6E. doi:10.1021/ed068pA6.