Funnel (concurrent computing)

Last updated

In Computer science, a funnel is a synchronization primitive used in kernel development to protect system resources. First used on Digital UNIX as a way to "funnel" device driver execution onto a single processor, funnels are now used in the Mac OS X kernel to serialize access to the BSD portion of XNU. [1]

Contents

A funnel is a mutual exclusion (mutex) mechanism that prevents more than one thread from accessing certain kernel resources at the same time. Each thread acquires a funnel when it enters a synchronized portion of the kernel, and releases it when it leaves. If a thread blocks (sleeps) while holding a funnel, the kernel forces the thread to automatically drop the funnel, thereby allowing other threads to enter the synchronized portion of the kernel.

Because a funnel is automatically dropped when a thread blocks, care must be taken to ensure that synchronized resources are acquired again after any blocking operation. Specifically, acquiring a funnel can be a blocking operation, so if multiple funnels are needed, they must be acquired at once. This limits the utility of funnels because it increases the granularity of locking when multiple funnels need to be held at once.

In Mac OS X

There is only one funnel in OS X 10.4 and higher. Prior to version 10.4, there are two funnels: one protects network resources, and the other protects other BSD kernel resources. A thread was only allowed to hold one funnel at a time, and holding both would cause a kernel panic. As a result of these limitations and the lack of granularity, funnels are being phased out of Mac OS X. For example, the networking funnel has been replaced by finer-grained locking mechanisms.

See also

Notes

For notes referring to sources, see bibliography below.

  1. Singh 07, pp. 1223-1229

Related Research Articles

<span class="mw-page-title-main">Computer multitasking</span> Concurrent execution of multiple processes

In computing, multitasking is the concurrent execution of multiple tasks over a certain period of time. New tasks can interrupt already started ones before they finish, instead of waiting for them to end. As a result, a computer executes segments of multiple tasks in an interleaved manner, while the tasks share common processing resources such as central processing units (CPUs) and main memory. Multitasking automatically interrupts the running program, saving its state and loading the saved state of another program and transferring control to it. This "context switch" may be initiated at fixed time intervals, or the running program may be coded to signal to the supervisory software when it can be interrupted.

Mach is a kernel developed at Carnegie Mellon University by Richard Rashid and Avie Tevanian to support operating system research, primarily distributed and parallel computing. Mach is often considered one of the earliest examples of a microkernel. However, not all versions of Mach are microkernels. Mach's derivatives are the basis of the operating system kernel in GNU Hurd and of Apple's XNU kernel used in macOS, iOS, iPadOS, tvOS, and watchOS.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. The implementation of threads and processes differs between operating systems. In Modern Operating Systems, Tanenbaum shows that many distinct models of process organization are possible. In many cases, a thread is a component of a process. The multiple threads of a given process may be executed concurrently, sharing resources such as memory, while different processes do not share these resources. In particular, the threads of a process share its executable code and the values of its dynamically allocated variables and non-thread-local global variables at any given time.

Darwin is the core Unix operating system of macOS, iOS, watchOS, tvOS, iPadOS and bridgeOS. It previously existed as an independent open-source operating system, first released by Apple Inc. in 2000. It is composed of code derived from NeXTSTEP, BSD, Mach, and other free software projects' code, as well as code developed by Apple.

<span class="mw-page-title-main">System call</span> Way for programs to access kernel services

In computing, a system call is the programmatic way in which a computer program requests a service from the operating system on which it is executed. This may include hardware-related services, creation and execution of new processes, and communication with integral kernel services such as process scheduling. System calls provide an essential interface between a process and the operating system.

In computer science, a lock or mutex is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications.

In databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability. It is also the name of the resulting set of database transaction schedules (histories). The protocol uses locks, applied by a transaction to data, which may block other transactions from accessing the same data during the transaction's life.

In software engineering, a spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking whether the lock is available. Since the thread remains active but is not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly released, although in some implementations they may be automatically released if the thread being waited on blocks or "goes to sleep".

<span class="mw-page-title-main">DragonFly BSD</span> Free and open-source Unix-like operating system

DragonFly BSD is a free and open-source Unix-like operating system forked from FreeBSD 4.8. Matthew Dillon, an Amiga developer in the late 1980s and early 1990s and FreeBSD developer between 1994 and 2003, began working on DragonFly BSD in June 2003 and announced it on the FreeBSD mailing lists on 16 July 2003.

In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003.

<span class="mw-page-title-main">XNU</span> Computer operating system kernel

XNU is the computer operating system (OS) kernel developed at Apple Inc. since December 1996 for use in the Mac OS X operating system and released as free and open-source software as part of the Darwin OS, which in addition to macOS is also the basis for the Apple TV Software, iOS, iPadOS, watchOS, and tvOS OSes. XNU is an abbreviation of X is Not Unix.

In concurrent programming, concurrent accesses to shared resources can lead to unexpected or erroneous behavior, so parts of the program where the shared resource is accessed need to be protected in ways that avoid the concurrent access. One way to do so is known as a critical section or critical region. This protected section cannot be entered by more than one process or thread at a time; others are suspended until the first leaves the critical section. Typically, the critical section accesses a shared resource, such as a data structure, a peripheral device, or a network connection, that would not operate correctly in the context of multiple concurrent accesses.

In computer science, serializing tokens are a concept in concurrency control arising from the ongoing development of DragonFly BSD. According to Matthew Dillon, they are most akin to SPLs, except a token works across multiple CPUs while SPLs only work within a single CPU's domain.

In computing, a futex is a kernel system call that programmers can use to implement basic locking, or as a building block for higher-level locking abstractions such as semaphores and POSIX mutexes or condition variables.

File locking is a mechanism that restricts access to a computer file, or to a region of a file, by allowing only one user or process to modify or delete it at a specific time and to prevent reading of the file while it's being modified or deleted.

In computer operating systems, a light-weight process (LWP) is a means of achieving multitasking. In the traditional meaning of the term, as used in Unix System V and Solaris, a LWP runs in user space on top of a single kernel thread and shares its address space and system resources with other LWPs within the same process. Multiple user-level threads, managed by a thread library, can be placed on top of one or many LWPs - allowing multitasking to be done at the user level, which can have some performance benefits.

A hybrid kernel is an operating system kernel architecture that attempts to combine aspects and benefits of microkernel and monolithic kernel architectures used in computer operating systems.

In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. Process synchronization refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity. Process synchronization primitives are commonly used to implement data synchronization.

A kernel debugger is a debugger present in some operating system kernels to ease debugging and kernel development by the kernel developers. A kernel debugger might be a stub implementing low-level operations, with a full-blown debugger such as GNU Debugger (gdb), running on another machine, sending commands to the stub over a serial line or a network connection, or it might provide a command line that can be used directly on the machine being debugged.

Grand Central Dispatch, is a technology developed by Apple Inc. to optimize application support for systems with multi-core processors and other symmetric multiprocessing systems. It is an implementation of task parallelism based on the thread pool pattern. The fundamental idea is to move the management of the thread pool out of the hands of the developer, and closer to the operating system. The developer injects "work packages" into the pool oblivious of the pool's architecture. This model improves simplicity, portability and performance.

References