G.8201

Last updated
G.8201
Error performance parameters and objectives for multi-operator international paths within optical transport networks
Optical fiber at INESC TEC.jpg
StatusIn force
Year started2003
Latest version2.1
January 2015
Organization ITU-T
CommitteeStudy Group 15
Related standards G.657
Domain Optical Transport Network
Website www.itu.int/rec/T-REC-G.8201

In Optical Transport Networks, G.8201 is an international standard that defines error performance parameters and objectives for multi-operator international paths. [1]

Contents

G.8201 is defined by the International Telecommunications Union's Standardization sector (ITU-T). [2]

History

G.8201 was developed by Study Group 13 of ITU-T in 2003. In 2011 a revised version was published (April 2011).

Standard

The G.8201 standard defines error performance parameters and objectives for international ODUk paths transported by the optical transport network (OTN).

The standard specifically addresses objectives for international ODUk paths, however the allocation principles can also be applied to the design of error performance for national or private ODUk paths.

Related Research Articles

ITU-T Standardization Sector of the ITU

The ITU Telecommunication Standardization Sector (ITU-T) coordinates standards for telecommunications and Information Communication Technology such as X.509 for cybersecurity, Y.3172 and Y.3173 for machine learning, and H.264/MPEG-4 AVC for video compression, between its Member States, Private Sector Members, and Academia Members. ITU-T is one of the three Sectors of the International Telecommunication Union (ITU).

OSI model Model of communication of seven abstraction layers

The Open Systems Interconnection model is a conceptual model that characterises and standardises the communication functions of a telecommunication or computing system without regard to its underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard communication protocols.

Synchronous optical networking

Synchronous optical networking (SONET) and synchronous digital hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer. This layer may be implemented by a PHY chip.

Wavelength-division multiplexing Technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity.

Very high-speed digital subscriber line (VDSL) and very high-speed digital subscriber line 2 (VDSL2) are digital subscriber line (DSL) technologies providing data transmission faster than asymmetric digital subscriber line (ADSL).

4G is the fourth generation of broadband cellular network technology, succeeding 3G, and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology, in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among multiple access points. Passive optical networks are often referred to as the "last mile" between an Internet service provider (ISP) and its customers.

Automatic Switched Transport Network (ASTN) allows traffic paths to be set up through a switched network automatically. The term ASTN replaces the term ASON and is often used interchangeably with GMPLS. This is not completely correct as GMPLS is a family of protocols, but ASON/ASTN is an optical/transport network architecture.The requirements of the ASON/ASTN architecture can be satisfied using GMPLS protocols developed by the IETF or by GMPLS protocols that have been modified by the ITU. Furthermore, the GMPLS protocols are applicable to optical and non-optical networks, and can be used in transport or client networks. Thus, GMPLS is a wider concept than ASTN.

Ethernet in the first mile (EFM) refers to using one of the Ethernet family of computer network technologies between a telecommunications company and a customer's premises. From the customer's point of view, it is their first mile, although from the access network's point of view it is known as the last mile.

G.709 ITU-T recommendation

ITU-T Recommendation G.709Interfaces for the Optical Transport Network (OTN) describes a means of communicating data over an optical network. It is a standardized method for transparent transport of services over optical wavelengths in DWDM systems. It is also known as Optical Transport Hierarchy (OTH) standard. The first edition of this protocol was approved in 2001.

ITU-T defines an Optical Transport Network (OTN) as a set of Optical Network Elements (ONE) connected by optical fiber links, able to provide functionality of transport, multiplexing, switching, management, supervision and survivability of optical channels carrying client signals. An ONE may Re-time, Re-Amplify, Re-shape (3R) but it does not have to be 3R – it can be purely photonic. Unless connected by optical fibre links, it shall not be OTN. Mere functionality of switching, management, supervision shall not make it OTN, unless the signals are carried through optical fibre.

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards.

G.984 ITU-T Recommendation

G.984, commonly known as GPON, is a standard for passive optical networks (PON) published by the ITU-T. It is commonly used to implement the last kilometre of fibre-to-the-premises (FTTP) services.

Carrier Ethernet is a marketing term for extensions to Ethernet for communications service providers that utilize Ethernet technology in their networks.

Multiprotocol Label Switching - Transport Profile (MPLS-TP) is a variant of the MPLS protocol that is used in packet switched data networks. MPLS-TP is the product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and PWE3 architectures to support the capabilities and functionalities of a packet transport network.

LTE Advanced

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.

IP over DWDM (IPoDWDM) is a technology used in telecommunications networks to integrate IP routers and network switches in the OTN . A true IPoDWDM solution is implemented only when the IP Routers and Switches support ITU-T G.709. In this way IP devices can monitor the optical path and implement the transport functionality as FEC specified by ITU-T G.709/Y.1331 or Super FEC functionality defined in ITU-T G.975.1.

Terabit Ethernet or TbE is Ethernet with speeds above 100 Gbit/s. 400 Gigabit Ethernet and 200 Gigabit Ethernet standards developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet were approved on December 6, 2017. In 2016, several networking equipment suppliers were already offering proprietary solutions for 200G and 400G.

10G-PON

10G-PON is a 2010 computer networking standard for data links, capable of delivering shared Internet access rates up to 10 Gbit/s over existing dark fiber. This is the ITU-T's next generation standard following on from GPON or Gigabit-capable PON. Optical fibre is shared by many subscribers in a network known as FTTx in a way that centralises most of the telecommunications equipment, often displacing copper phone lines that connect premises to the phone exchange. Passive optical network (PON) architecture has become a cost-effective way to meet performance demands in access networks, and sometimes also in large optical local networks for "Fibre-to-the-desk".

References

  1. Kolawole, Michael Olorunfunmi (2013-11-23). Satellite Communication Engineering, Second Edition. CRC Press. p. 237. ISBN   9781482210101.
  2. "G.8201 : Error performance parameters and objectives for multi-operator international paths within optical transport networks". www.itu.int. Archived from the original on 2019-11-08. Retrieved 2019-11-08.