GHK algorithm

Last updated

The GHK algorithm (Geweke, Hajivassiliou and Keane) [1] is an importance sampling method for simulating choice probabilities in the multivariate probit model. These simulated probabilities can be used to recover parameter estimates from the maximized likelihood equation using any one of the usual well known maximization methods (Newton's method, BFGS, etc.). Train [2] has well documented steps for implementing this algorithm for a multinomial probit model. What follows here will applies to the binary multivariate probit model.

In statistics, importance sampling is a general technique for estimating properties of a particular distribution, while only having samples generated from a different distribution than the distribution of interest. It is related to umbrella sampling in computational physics. Depending on the application, the term may refer to the process of sampling from this alternative distribution, the process of inference, or both.

Multivariate probit model

In statistics and econometrics, the multivariate probit model is a generalization of the probit model used to estimate several correlated binary outcomes jointly. For example, if it is believed that the decisions of sending at least one child to public school and that of voting in favor of a school budget are correlated, then the multivariate probit model would be appropriate for jointly predicting these two choices on an individual-specific basis. This approach was initially developed by Siddhartha Chib and Edward Greenberg.

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots of a real-valued function. The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f ′, and an initial guess x0 for a root of f. If the function satisfies sufficient assumptions and the initial guess is close, then

Consider the case where one is attempting to evaluate the choice probability of where and where we can take as choices and as individuals or observations, is the mean and is the covariance matrix of the model. The probability of observing choice is

Where and,

Unless is small (less than or equal to 2) there is no closed form solution for the integrals defined above (some work has been done with [3] ). The alternative to evaluating these integrals closed form or by quadrature methods is to use simulation. GHK is a simulation method to simulate the probability above using importance sampling methods.

Evaluating is simplified by recognizing that the latent data model can be rewritten using a Cholesky factorization, . This gives where the terms are distributed .

Using this factorization and the fact that the are distributed independently one can simulate draws from a truncated multivariate normal distribution using draws from a univariate random normal.

For example, if the region of truncation has lower and upper limits equal to (including a,b = ) then the task becomes

Note: , substituting:

Rearranging above,

Now all one needs to do is iteratively draw from the truncated univariate normal distribution with the given bounds above. This can be done by the inverse CDF method and noting the truncated normal distribution is given by,

Where will be a number between 0 and 1 because the above is a CDF. This suggests to generate random draws from the truncated distribution one has to solve for giving,

where and and is the standard normal CDF. With such draws one can reconstruct the by its simplified equation using the Cholesky factorization. These draws will be conditional on the draws coming before and using properties of normals the product of the conditional PDFs will be the joint distribution of the ,

Where is the multivariate normal distribution.

Because conditional on is restricted to the set by the setup using the Cholesky factorization then we know that is a truncated multivariate normal. The distribution function of a truncated normal is,

Therefore, has distribution,

where is the standard normal pdf for choice .

Because the above standardization makes each term mean 0 variance 1.

Let the denominator and the numerator where is the multivariate normal PDF.

Going back to the original goal, to evaluate the

Using importance sampling we can evaluate this integral,

This is well approximated by .

Related Research Articles

Stress–energy tensor Tensor describing the density and flux of energy in spacetime

The stress–energy tensor, sometimes stress–energy–momentum tensor or energy–momentum tensor, is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

Linear elasticity is the mathematical study of how solid objects deform and become internally stressed due to prescribed loading conditions. Linear elasticity models materials as continua. Linear elasticity is a simplification of the more general nonlinear theory of elasticity and is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding. These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often with the aid of finite element analysis.

In mathematics, the Hamilton–Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations, and is a special case of the Hamilton–Jacobi–Bellman equation. It is named for William Rowan Hamilton and Carl Gustav Jacob Jacobi.

Polyakov action An Action Principle from Conformal Field Theory

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe, and has become associated with Alexander Polyakov after he made use of it in quantizing the string. The action reads

LSZ reduction formula

In quantum field theory, the LSZ reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In differential geometry, a Lie algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.

Electromagnetic stress–energy tensor

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

Covariant formulation of classical electromagnetism

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the space-time, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars-- in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.

The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product .

Bayesian multivariate linear regression

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

The possibility that there might be more than one dimension of time has occasionally been discussed in physics and philosophy.

In quantum field theory, a non-topological soliton (NTS) is a field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

Variance function

In statistics, the variance function is a smooth function which depicts the variance of a random quantity as a function of its mean. The variance function plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.

This article summarizes important identities in exterior calculus.

References

  1. Hajivassiliou, Vassilis (1994). "CLASSICAL ESTIMATION METHODS FOR LDV MODELS USING SIMULATION" (PDF). Handbook of econometrics.
  2. Train, Kenneth (2003). Discrete Choice Methods With Simulation. Cambridge University Press.
  3. Greene, William (2003). Econometric Analysis. Prentice Hall.